PREDICTIVE OPTIMAL ANTICLOTTING TREATMENT FOR SEGMENTED PATIENT POPULATIONS
针对细分患者群体的预测性最佳抗凝血治疗
基本信息
- 批准号:9678754
- 负责人:
- 金额:$ 23.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary
Anticlotting drugs reduce risk to thrombosis and treat conditions that might lead to stroke, pulmonary
embolism, deep vein thrombosis or other blood clotting related disease. The impact and value of anticlotting
medication in the U.S. is dramatic. For example, stroke is the third leading cause of death in the U.S. with over
140,000 deaths annually. The majority of stroke incidences are due to ischemia (87%) or transient ischemic
attack (TIA, ~5-10%) and are typically managed by the use of anticlotting drugs including anticoagulants (e.g.,
warfarin and dabigatran) and antiplatelets (e.g., clopidogrel). Whatever the patient's disease or condition
leading to a prescription of an anticlotting agent, selecting the best combination of drug and treatment protocol
is complicated by the individual differences in anticlotting drug response due to genetics (e.g. >20-fold
difference for warfarin), physiology, and compliance. In practice, providers use a combination of experience,
scientific evidence and clinical trial results to develop anticlotting “best practice” treatment plans designed to
roughly minimize the patient-to-patient response variability and risks across the provider's patient population.
However, the high degree of patient heterogeneity causes variations in individual patient response to these
“best practice” drug-protocol approaches. In short, no practical optimal anticlotting treatment plan exists for
large heterogeneous patient populations that accounts for individual risk factors; drug and protocol options;
and achieves minimal risk to stroke. Access to large comprehensive electronic medical records (EMR)
covering diverse patient populations, coupled with novel modeling and computational simulations provides an
unprecedented opportunity to conduct in silico identification and validation of optimal anticlotting treatment
strategies.
We propose a novel computational approach that uses individual patient data and outcome evidence from two
large electronic medical record (EMR) databases to conduct side-by-side clinical simulations comparing
outcomes for two or more anticlotting drug and dose protocols. The approach first converts EMR data to EMR-
based simulated data that reflects the statistical and individual characteristics of the EMR population. We then
apply advanced treatment simulation methods to predict outcomes and costs of multiple drug-dosing protocols.
Finally, we apply an optimization approach to identify the optimal treatment plans for segments of the
population (e.g. the African American segment, white females over 50 segment, …). Finally, we will conduct in
silico tests of the robustness and validation of the predicted optimal anticlotting treatment plan. This approach,
promises to provide the first environment in which side-by-side anticlotting clinical simulations and outcome
predictions for an entire population based on existing EMR data sets can be calculated, compared and
contrasted. Such predictive evidence can then be used to guide clinical trial designs, and suggest
improvements to hospital-wide anticlotting treatment plans.
项目摘要
抗凝血药物可降低血栓形成的风险,并治疗可能导致中风、肺动脉高压和其他疾病的疾病。
栓塞、深静脉血栓形成或其他凝血相关疾病。抗凝血的影响和价值
美国的药物治疗是戏剧性的。例如,中风是美国第三大死亡原因,
每年有14万人死亡。大多数中风发生率是由于缺血(87%)或短暂性缺血引起的
发作(TIA,~5-10%),通常通过使用抗凝药物(例如,
华法林和达比加群)和抗血小板药(例如,氯吡格雷)。无论患者的疾病或状况如何
导致抗凝血剂的处方,选择药物和治疗方案的最佳组合,
由于遗传学导致的抗凝血药物反应的个体差异(例如>20倍),
华法林的差异)、生理学和依从性。在实践中,提供者使用经验,
科学证据和临床试验结果,以制定抗凝血“最佳实践”治疗计划,
大致最小化提供者的患者群体中的患者对患者的反应可变性和风险。
然而,患者的高度异质性导致个体患者对这些药物的反应存在差异。
“最佳做法”药物议定书办法。简而言之,没有实际的最佳抗凝血治疗计划存在,
考虑到个体风险因素的大量异质性患者人群;药物和方案选择;
并且实现最小的中风风险。访问大型综合电子病历(EMR)
覆盖不同的患者人群,加上新颖的建模和计算模拟,
进行计算机识别和验证最佳抗凝治疗的前所未有的机会
战略布局
我们提出了一种新的计算方法,使用个体患者数据和来自两个
大型电子病历(EMR)数据库进行并行临床模拟,
两种或多种抗血栓药物和剂量方案的结果。该方法首先将EMR数据转换为EMR-
基于模拟数据,反映了EMR人群的统计和个体特征。然后我们
应用先进的治疗模拟方法来预测多种药物给药方案的结果和成本。
最后,我们应用一种优化方法来确定最佳的治疗计划的部分,
人群(例如,非裔美国人群体、50岁以上的白色女性群体.)。最后,我们将在
预测的最佳抗凝治疗计划的稳健性和验证的计算机测试。这种方法,
有望提供第一个环境,其中并排抗凝临床模拟和结果
基于现有EMR数据集的整个人群的预测可以被计算,比较,
对比。这样的预测性证据可以用来指导临床试验设计,并建议
改善医院范围内的抗凝血治疗计划。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A national agenda for the future of pathology in personalized medicine: report of the proceedings of a meeting at the Banbury Conference Center on genome-era pathology, precision diagnostics, and preemptive care: a stakeholder summit.
- DOI:10.1309/ajcp9gdnlwb4gaci
- 发表时间:2011-05
- 期刊:
- 影响因子:3.5
- 作者:Tonellato PJ;Crawford JM;Boguski MS;Saffitz JE
- 通讯作者:Saffitz JE
The future of genomics in pathology.
- DOI:10.3410/m4-14
- 发表时间:2012-01-01
- 期刊:
- 影响因子:0
- 作者:Wall, Dennis P;Tonellato, Peter J
- 通讯作者:Tonellato, Peter J
Using simulation and optimization approach to improve outcome through warfarin precision treatment
使用模拟和优化方法通过华法林精准治疗改善结果
- DOI:10.1142/9789813235533_0038
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Chih;Lu He;Kourosh Ravvaz;John A. Weissert;P. Tonellato
- 通讯作者:P. Tonellato
Personalized Anticoagulation: Optimizing Warfarin Management Using Genetics and Simulated Clinical Trials.
- DOI:10.1161/circgenetics.117.001804
- 发表时间:2017-12
- 期刊:
- 影响因子:0
- 作者:Ravvaz K;Weissert JA;Ruff CT;Chi CL;Tonellato PJ
- 通讯作者:Tonellato PJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter J. Tonellato其他文献
Breast cancer risk assessment based on a predictive model: evaluation of risk factors among Japanese women
- DOI:
10.1186/s12885-025-13556-8 - 发表时间:
2025-02-05 - 期刊:
- 影响因子:3.400
- 作者:
Michiyo Yamada;Takashi Chishima;Takashi Ishikawa;Kazutaka Narui;Sadatoshi Sugae;Peter J. Tonellato;Itaru Endo - 通讯作者:
Itaru Endo
Peter J. Tonellato的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter J. Tonellato', 18)}}的其他基金
Predictive optimal anticlotting treatment for segmented patient populations
针对细分患者群体的预测性最佳抗凝血治疗
- 批准号:
8723295 - 财政年份:2013
- 资助金额:
$ 23.5万 - 项目类别:
Predictive optimal anticlotting treatment for segmented patient populations
针对细分患者群体的预测性最佳抗凝血治疗
- 批准号:
8913774 - 财政年份:2013
- 资助金额:
$ 23.5万 - 项目类别:
Method for Prediction of Efficacy of Genetic-Based Prediction Models of Personali
基于遗传的个人预测模型的功效预测方法
- 批准号:
8065244 - 财政年份:2010
- 资助金额:
$ 23.5万 - 项目类别:
Method for Prediction of Efficacy of Genetic-Based Prediction Models of Personali
基于遗传的个人预测模型的功效预测方法
- 批准号:
8119797 - 财政年份:2010
- 资助金额:
$ 23.5万 - 项目类别:
Method for Prediction of Efficacy of Genetic-Based Prediction Models of Personali
基于遗传的个人预测模型的功效预测方法
- 批准号:
7828231 - 财政年份:2009
- 资助金额:
$ 23.5万 - 项目类别:
Method for Prediction of Efficacy of Genetic-Based Prediction Models of Personali
基于遗传的个人预测模型的功效预测方法
- 批准号:
7726391 - 财政年份:2009
- 资助金额:
$ 23.5万 - 项目类别:
相似海外基金
Optimal utility-based design of oncology clinical development programmes
基于效用的肿瘤学临床开发项目的优化设计
- 批准号:
2734768 - 财政年份:2026
- 资助金额:
$ 23.5万 - 项目类别:
Studentship
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
- 批准号:
2401019 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
- 批准号:
2339353 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Optimal cell factories for membrane protein production
用于膜蛋白生产的最佳细胞工厂
- 批准号:
BB/Y007603/1 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Research Grant
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
- 批准号:
EP/X029093/1 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Fellowship
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
Labor Market Polarization, Earnings Inequality and Optimal Tax Progressivity: A Theoretical and Empirical Analysis
劳动力市场两极分化、收入不平等和最优税收累进性:理论与实证分析
- 批准号:
24K04909 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344765 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
- 批准号:
2341950 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant