Method for Prediction of Efficacy of Genetic-Based Prediction Models of Personali
基于遗传的个人预测模型的功效预测方法
基本信息
- 批准号:7726391
- 负责人:
- 金额:$ 33.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsClassificationClinicalClinical ResearchClinical TrialsCollectionComputerized Medical RecordDataDevicesDoseEnvironmentEvaluationExpenditureGeneticGenetic screening methodGenotypeHealthcareIndividualKnowledgeLabelMalignant NeoplasmsMedicalMedical RecordsMedicineMethodologyMethodsModelingPatientsPharmacogeneticsPredictive ValuePreventiveProcessPublishingResearchResearch InfrastructureReview LiteratureRiskSeriesTechnologyTestingTherapeuticTranslatingTranslationsValidationWarfarinWorkbasebiomedical informaticsclinical efficacydesigngenetic analysisimprovedresearch studysimulationtooltrial comparing
项目摘要
DESCRIPTION (provided by applicant): The collection of newly discovered clinically valuable genetic tests is far outpacing our ability to use clinical trials to determine their clinical efficacy and determine which of the collection of tests and associated algorithms are best suited for any given clinical setting. For example, a review of the literature demonstrates that at least 35 published algorithms for the prediction of therapeutic warfarin dosing have been published in the past ten years, nine of which include genotype data (unpublished review). Expenditures to determine the most clinical useful of these algorithms include a total of 19 clinical trials (clinicaltrials.gov, accessed Feb, 2008) Compounding this complexity and adding to the delay of the successful medical use of the rapidly expanding collection of clinically valuable genetic discoveries is the lack of clinical and biomedical informatic methods, tools and infrastructure required to facilitate the successful translation of the discoveries to practical clinical use. Efforts to translate important biomedical informatics methods, tools and processes required to implement important new genetic discoveries in the clinical setting are severely hindered by regulatory, technical and validation barriers not easily resolved in the current clinical-research or clinical enterprise environments. This proposal will test an environment and methodology that creates clinical avatars with data statistically consistent with actual patient electronic medical records. Once created, these clinical avatar medical records will be used to conduct insilico experiments to compare genetic- based algorithms and their predicted value in the clinical setting. We will develop and test the methodology and create the applications by conducting a series of clinical avatar simulations and subsequent analysis of genetic-based warfarin dosing prediction. Once developed, we will conduct a series of insilico clinical trials comparing various clinical and genetic factors to demonstrate the efficacy of the warfarin dosing algorithms. This work is representative of similar projects that may be designed to test other personalized medicine devices such as genetic tests used to quantify risk to cancers, pharmacogenetic problems, and other FDA labeled "IVDMIA" devices (e.g. Genetic Health's Oncotype DX(R)) projected to improve predictive and preventive personalized medicine.
描述(由申请人提供):新发现的有临床价值的基因检测的收集远远超过了我们使用临床试验来确定其临床疗效的能力,并确定哪些测试集合和相关算法最适合任何给定的临床环境。例如,一篇文献综述表明,在过去十年中,至少有35篇已发表的用于预测治疗性华法林剂量的算法,其中9篇包括基因型数据(未发表的综述)。用于确定这些算法最具临床用途的支出包括总共19项临床试验(clinicaltrials.gov, 2008年2月访问)。由于缺乏促进将这些发现成功转化为实际临床使用所需的临床和生物医学信息学方法、工具和基础设施,使这种复杂性更加复杂,并使迅速扩大的临床有价值的基因发现的收集在医疗上的成功应用更加延迟。将重要的生物医学信息学方法、工具和流程转化为在临床环境中实施重要的新基因发现所需要的努力,受到当前临床研究或临床企业环境中难以解决的监管、技术和验证障碍的严重阻碍。该提案将测试一种环境和方法,该环境和方法创建具有统计数据的临床化身,与实际患者的电子医疗记录一致。一旦创建,这些临床化身医疗记录将用于进行计算机实验,以比较基于遗传的算法及其在临床环境中的预测值。我们将开发和测试方法,并通过进行一系列临床化身模拟和随后的基于基因的华法林剂量预测分析来创建应用程序。一旦开发出来,我们将进行一系列的计算机临床试验,比较各种临床和遗传因素,以证明华法林给药算法的有效性。这项工作是类似项目的代表,这些项目可能被设计用于测试其他个性化医疗设备,如用于量化癌症风险的基因测试,药物遗传学问题,以及其他FDA标记的“IVDMIA”设备(例如遗传健康的Oncotype DX(R)),旨在改善预测性和预防性个性化医疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter J. Tonellato其他文献
Breast cancer risk assessment based on a predictive model: evaluation of risk factors among Japanese women
- DOI:
10.1186/s12885-025-13556-8 - 发表时间:
2025-02-05 - 期刊:
- 影响因子:3.400
- 作者:
Michiyo Yamada;Takashi Chishima;Takashi Ishikawa;Kazutaka Narui;Sadatoshi Sugae;Peter J. Tonellato;Itaru Endo - 通讯作者:
Itaru Endo
Peter J. Tonellato的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter J. Tonellato', 18)}}的其他基金
Predictive optimal anticlotting treatment for segmented patient populations
针对细分患者群体的预测性最佳抗凝血治疗
- 批准号:
8723295 - 财政年份:2013
- 资助金额:
$ 33.9万 - 项目类别:
PREDICTIVE OPTIMAL ANTICLOTTING TREATMENT FOR SEGMENTED PATIENT POPULATIONS
针对细分患者群体的预测性最佳抗凝血治疗
- 批准号:
9678754 - 财政年份:2013
- 资助金额:
$ 33.9万 - 项目类别:
Predictive optimal anticlotting treatment for segmented patient populations
针对细分患者群体的预测性最佳抗凝血治疗
- 批准号:
8913774 - 财政年份:2013
- 资助金额:
$ 33.9万 - 项目类别:
Method for Prediction of Efficacy of Genetic-Based Prediction Models of Personali
基于遗传的个人预测模型的功效预测方法
- 批准号:
8065244 - 财政年份:2010
- 资助金额:
$ 33.9万 - 项目类别:
Method for Prediction of Efficacy of Genetic-Based Prediction Models of Personali
基于遗传的个人预测模型的功效预测方法
- 批准号:
8119797 - 财政年份:2010
- 资助金额:
$ 33.9万 - 项目类别:
Method for Prediction of Efficacy of Genetic-Based Prediction Models of Personali
基于遗传的个人预测模型的功效预测方法
- 批准号:
7828231 - 财政年份:2009
- 资助金额:
$ 33.9万 - 项目类别:
相似海外基金
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Identifying Brain Network Features that Underlie Clinical Classification
识别临床分类基础的大脑网络特征
- 批准号:
574538-2022 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
University Undergraduate Student Research Awards
Transcriptomic classification of non-muscle invasive bladder cancer and its clinical and prognostic implication
非肌层浸润性膀胱癌的转录组学分类及其临床和预后意义
- 批准号:
10693811 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
Transcriptomic classification of non-muscle invasive bladder cancer and its clinical and prognostic implication
非肌层浸润性膀胱癌的转录组学分类及其临床和预后意义
- 批准号:
10388707 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
Comparing the World Health Organization's ICD-11 Clinical Descriptions and Diagnostic Guidelines to the American Psychiatric Association's DSM-5 in clinical settings: Which classification is best for Canadian health care and Canadian health information?
在临床环境中比较世界卫生组织的 ICD-11 临床描述和诊断指南与美国精神病学协会的 DSM-5:哪种分类最适合加拿大医疗保健和加拿大健康信息?
- 批准号:
447530 - 财政年份:2021
- 资助金额:
$ 33.9万 - 项目类别:
Operating Grants
Which mental health classification serves Canada best? A mixed methods, multicenter comparison of the World Health Organization's ICD-11 Clinical Descriptions and Diagnostic Guidelines with the American Psychiatric Association's DSM-5.
哪种心理健康分类最适合加拿大?
- 批准号:
456724 - 财政年份:2021
- 资助金额:
$ 33.9万 - 项目类别:
Operating Grants
Histopathological classification of the immune microenvironment of hepatocellular carcinoma including all clinical stages
肝细胞癌免疫微环境的组织病理学分类,包括所有临床阶段
- 批准号:
21K15407 - 财政年份:2021
- 资助金额:
$ 33.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
0238 AI Classification of COVID - 19 studies to ensure clinical guidance and healthcare policy is informed by current meta-analysis of all available evidence
0238 COVID-19 研究的 AI 分类,以确保通过对所有可用证据的当前荟萃分析为临床指导和医疗保健政策提供信息
- 批准号:
72665 - 财政年份:2020
- 资助金额:
$ 33.9万 - 项目类别:
Collaborative R&D
Molecular signature-based classification of circulating tumor cells and its clinical application for refinement of multidisciplinary treatment of pancreatic cancer.
基于分子特征的循环肿瘤细胞分类及其在改进胰腺癌多学科治疗中的临床应用。
- 批准号:
19K09209 - 财政年份:2019
- 资助金额:
$ 33.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
TP53 variant classification models to improve clinical care of patients
TP53变异分类模型可改善患者的临床护理
- 批准号:
nhmrc : GNT1161589 - 财政年份:2019
- 资助金额:
$ 33.9万 - 项目类别:
Project Grants