Predictive optimal anticlotting treatment for segmented patient populations

针对细分患者群体的预测性最佳抗凝血治疗

基本信息

  • 批准号:
    8913774
  • 负责人:
  • 金额:
    $ 24.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Anticlotting drugs reduce risk to thrombosis and treat conditions that might lead to stroke, pulmonary embolism, deep vein thrombosis or other blood clotting related disease. The impact and value of anticlotting medication in the U.S. is dramatic. For example, stroke is the third leading cause of death in the U.S. with over 140,000 deaths annually. The majority of stroke incidences are due to ischemia (87%) or transient ischemic attack (TIA, ~5-10%) and are typically managed by the use of anticlotting drugs including anticoagulants (e.g., warfarin and dabigatran) and antiplatelets (e.g., clopidogrel). Whatever the patient's disease or condition leading to a prescription of an anticlotting agent, selecting the bet combination of drug and treatment protocol is complicated by the individual differences in anticlotting drug response due to genetics (e.g. >20-fold difference for warfarin), physiology, and compliance. In practice, providers use a combination of experience, scientific evidence and clinical trial results to develop anticlotting "best practice" treatment plans designed to roughly minimize the patient-to-patient response variability and risks across the provider's patient population. However, the high degree of patient heterogeneity causes variations in individual patient response to these "best practice" drug-protocol approaches. In short, no practical optimal anticlotting treatment plan exists for large heterogeneous patient populations that accounts for individual risk factors; drug and protocol options; and achieves minimal risk to stroke. Access to large comprehensive electronic medical records (EMR) covering diverse patient populations, coupled with novel modeling and computational simulations provides an unprecedented opportunity to conduct in silico identification and validation of optimal anticlottin treatment strategies. We propose a novel computational approach that uses individual patient data and outcome evidence from two large electronic medical record (EMR) databases to conduct side-by-side clinical simulations comparing outcomes for two or more anticlotting drug and dose protocols. The approach first converts EMR data to EMR- based simulated data that reflects the statistical and individual characteristics of the EMR population. We then apply advanced treatment simulation methods to predict outcomes and costs of multiple drug-dosing protocols. Finally, we apply an optimization approach to identify the optimal treatment plans for segments of the population (e.g. the African American segment, white females over 50 segment, ...). Finally, we will conduct in silico tests of the robustness and validation of the predicted optimal anticlotting treatment plan. This approach, promises to provide the first environment in which side-by-side anticlotting clinical simulations and outcome predictions for an entire population based on existing EMR data sets can be calculated, compared and contrasted. Such predictive evidence can then be used to guide clinical trial designs, and suggest improvements to hospital-wide anticlotting treatment plans.
描述(由申请人提供):抗凝血药物可降低血栓形成的风险,并治疗可能导致中风、肺栓塞、深静脉血栓形成或其他凝血相关疾病的疾病。抗凝血药物在美国的影响和价值是戏剧性的。例如,中风是美国第三大死亡原因,每年有超过140,000人死亡。大多数中风发生率是由于缺血(87%)或短暂性脑缺血发作(TIA,~5-10%),并且通常通过使用抗凝剂(例如,华法林和达比加群)和抗血小板药(例如,氯吡格雷)。无论患者的疾病或状况导致抗凝血剂的处方,选择药物和治疗方案的最佳组合都因抗凝血药物反应的个体差异而复杂化,所述个体差异归因于遗传学(例如,华法林的差异>20倍)、生理学和免疫学。 合规在实践中,供应商使用经验,科学证据和临床试验结果的组合来开发抗凝血“最佳实践”治疗计划,旨在大致最大限度地减少患者之间的反应变异性和供应商患者人群的风险。然而,患者的高度异质性导致个体患者对这些“最佳实践”药物方案方法的反应存在差异。简而言之,对于大量异质性患者人群,没有实用的最佳抗凝治疗计划,该计划考虑了个体风险因素;药物和方案选择;并实现了卒中风险最小化。访问涵盖不同患者人群的大型综合电子病历(EMR),加上新的建模和计算模拟,为进行计算机识别和验证最佳anticlottin治疗策略提供了前所未有的机会。 我们提出了一种新的计算方法,该方法使用来自两个大型电子病历(EMR)数据库的个体患者数据和结果证据,进行并排临床模拟,比较两种或多种抗凝药物和剂量方案的结果。该方法首先将EMR数据转换为基于EMR的模拟数据,该模拟数据反映EMR人群的统计和个体特征。然后,我们应用先进的治疗模拟方法来预测多种药物给药方案的结果和成本。最后,我们应用一种优化方法来确定最佳的治疗计划的人口部分(例如,非洲裔美国人的部分,白色女性超过50段,.)。最后,我们将对预测的最佳抗凝剂的稳健性和验证进行计算机模拟测试 治疗方案这种方法有望提供第一个环境,在该环境中,可以计算、比较和对比基于现有EMR数据集的整个人群的并行抗凝临床模拟和结果预测。这样的预测性证据可以用来指导临床试验设计,并建议改进医院范围内的抗凝血治疗计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter J. Tonellato其他文献

Breast cancer risk assessment based on a predictive model: evaluation of risk factors among Japanese women
  • DOI:
    10.1186/s12885-025-13556-8
  • 发表时间:
    2025-02-05
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Michiyo Yamada;Takashi Chishima;Takashi Ishikawa;Kazutaka Narui;Sadatoshi Sugae;Peter J. Tonellato;Itaru Endo
  • 通讯作者:
    Itaru Endo

Peter J. Tonellato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter J. Tonellato', 18)}}的其他基金

Predictive optimal anticlotting treatment for segmented patient populations
针对细分患者群体的预测性最佳抗凝血治疗
  • 批准号:
    8723295
  • 财政年份:
    2013
  • 资助金额:
    $ 24.79万
  • 项目类别:
PREDICTIVE OPTIMAL ANTICLOTTING TREATMENT FOR SEGMENTED PATIENT POPULATIONS
针对细分患者群体的预测性最佳抗凝血治疗
  • 批准号:
    9678754
  • 财政年份:
    2013
  • 资助金额:
    $ 24.79万
  • 项目类别:
Method for Prediction of Efficacy of Genetic-Based Prediction Models of Personali
基于遗传的个人预测模型的功效预测方法
  • 批准号:
    8065244
  • 财政年份:
    2010
  • 资助金额:
    $ 24.79万
  • 项目类别:
Method for Prediction of Efficacy of Genetic-Based Prediction Models of Personali
基于遗传的个人预测模型的功效预测方法
  • 批准号:
    8119797
  • 财政年份:
    2010
  • 资助金额:
    $ 24.79万
  • 项目类别:
Method for Prediction of Efficacy of Genetic-Based Prediction Models of Personali
基于遗传的个人预测模型的功效预测方法
  • 批准号:
    7828231
  • 财政年份:
    2009
  • 资助金额:
    $ 24.79万
  • 项目类别:
Method for Prediction of Efficacy of Genetic-Based Prediction Models of Personali
基于遗传的个人预测模型的功效预测方法
  • 批准号:
    7726391
  • 财政年份:
    2009
  • 资助金额:
    $ 24.79万
  • 项目类别:
CORE--BIOINFORMATICS
核心--生物信息学
  • 批准号:
    7013119
  • 财政年份:
    2005
  • 资助金额:
    $ 24.79万
  • 项目类别:
CORE--BIOINFORMATICS
核心--生物信息学
  • 批准号:
    6565005
  • 财政年份:
    2002
  • 资助金额:
    $ 24.79万
  • 项目类别:
CORE--INFORMATICS AND COMPUTATIONAL RESOURCE
核心--信息学和计算资源
  • 批准号:
    6302385
  • 财政年份:
    2000
  • 资助金额:
    $ 24.79万
  • 项目类别:
CORE--INFORMATICS AND COMPUTATIONAL RESOURCE
核心--信息学和计算资源
  • 批准号:
    6110544
  • 财政年份:
    1999
  • 资助金额:
    $ 24.79万
  • 项目类别:

相似海外基金

Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10707830
  • 财政年份:
    2023
  • 资助金额:
    $ 24.79万
  • 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
  • 批准号:
    479728
  • 财政年份:
    2023
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
  • 批准号:
    10884567
  • 财政年份:
    2023
  • 资助金额:
    $ 24.79万
  • 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
  • 批准号:
    10751964
  • 财政年份:
    2023
  • 资助金额:
    $ 24.79万
  • 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
  • 批准号:
    486321
  • 财政年份:
    2022
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10676786
  • 财政年份:
    2022
  • 资助金额:
    $ 24.79万
  • 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10440970
  • 财政年份:
    2022
  • 资助金额:
    $ 24.79万
  • 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
  • 批准号:
    10642998
  • 财政年份:
    2022
  • 资助金额:
    $ 24.79万
  • 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10482465
  • 财政年份:
    2022
  • 资助金额:
    $ 24.79万
  • 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
  • 批准号:
    10191053
  • 财政年份:
    2020
  • 资助金额:
    $ 24.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了