Clinical Text Automatic De-Identification to Support Large Scale Data Reuse and Sharing
临床文本自动去识别化,支持大规模数据重用和共享
基本信息
- 批准号:9908962
- 负责人:
- 金额:$ 75.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-15 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionClinicalClinical DataClinical ResearchCodeCommunications MediaConfidentiality of Patient InformationDataDevelopmentElectronic Health RecordEnrollmentEnvironmentFast Healthcare Interoperability ResourcesFundingGrowthHealth Insurance Portability and Accountability ActImprove AccessLinkManualsMedicalModernizationNational Institute of General Medical SciencesNatural Language ProcessingPatient CarePatient Data PrivacyPatientsPerformancePersonally Identifiable InformationPhasePrivacyProcessRecordsReference StandardsResearchResearch InfrastructureResearch PersonnelResearch Project GrantsResearch SubjectsRiskSavingsSecureSiteSouth CarolinaSpeedStructureSystemTest ResultTestingTextTimeTrainingTrustUnited States National Institutes of HealthUniversitiesVisualizationbasecommercial applicationcommercializationcostcryptographydata reusedata sharinghealth care qualityhealth care service organizationhealth care settingshealth managementimprovedlarge scale dataprototypesoftware developmentstandard measurestructured datasystems researchunstructured dataweb services
项目摘要
The adoption of Electronic Health Record (EHR) systems is growing at a fast pace in the U.S., and this
growth results in very large quantities of patient clinical data becoming available in electronic format with
tremendous potential but an equally large concern for patient confidentiality breaches. Secondary use of
clinical data is essential to fulfill the potential for high quality healthcare, improved healthcare management,
and effective clinical research. NIH expects that larger research projects share their research data in a way
that protects the confidentiality of research subjects. De-identification of patient data has been proposed as a
solution to both facilitate secondary use of clinical data and protect patient data confidentiality. The majority of
clinical data found in the EHR is represented as narrative text clinical notes, and de-identification of clinical
text is a tedious and costly manual endeavor. Automated approaches based on Natural Language
Processing have been implemented and evaluated, allowing for higher accuracy and much faster de-
identification than manual approaches.
Clinacuity, Inc. proposes to advance a text de-identification system from a prototype to an accurate,
adaptable, and robust system, integrated into the research infrastructure at our implementation and testing
site (Medical University of South Carolina, Charleston, SC), and ready for commercialization efforts. To
accomplish this undertaking, we will focus on the following specific aims and related objectives, while
continuing to prepare the commercialization of the integrated system, with detailed market analysis,
commercial roadmap development, and modern media communication: 1) Enhance the text de-identification
system performance, scalability, and quality to produce an enterprise-grade solution ready for deployment; 2)
Enable use of structured data for enhanced text de-identification (when structured PII is available) and for
complete patient records de-identification (i.e., records combining structured and unstructured data). This aim
also includes implementing “one-way” pseudo-identifier cryptographic hashing to enable securely linking
already de-identified patient records; 3) Integrate the text de-identification system with a research data
capture and management system. This includes implementation of the de-identification system as a secure
web service, with standards-based access and integration.
This de-identification system has potential commercial applications in clinical research and in healthcare
settings. It will improve access to richer, more detailed, and more accurate clinical data (in clinical text) for
clinical researchers. It will ease research data sharing (as expected for larger NIH-funded research projects)
and help healthcare organizations protect patient data confidentiality. Significant time-savings will also be
offered, with a process at least 200-1000 times faster than manual de-identification.
在美国,电子健康记录(EHR)系统的采用正在快速增长
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHANE MEYSTRE其他文献
STEPHANE MEYSTRE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHANE MEYSTRE', 18)}}的其他基金
Automated Dynamic Lists for Efficient Electronic Health Record Management
用于高效电子健康记录管理的自动化动态列表
- 批准号:
8830154 - 财政年份:2014
- 资助金额:
$ 75.93万 - 项目类别:
Automated Problem and Allergy Lists Enrichment Based on High Accuracy Information Extraction from the Electronic Health Record
基于电子健康记录中高精度信息提取的自动化问题和过敏列表丰富
- 批准号:
9138574 - 财政年份:2013
- 资助金额:
$ 75.93万 - 项目类别:
Automated Dynamic Lists for Efficient Electronic Health Record Management
用于高效电子健康记录管理的自动化动态列表
- 批准号:
8590856 - 财政年份:2013
- 资助金额:
$ 75.93万 - 项目类别:
Automated Dynamic Lists for Efficient Electronic Health Record Management
用于高效电子健康记录管理的自动化动态列表
- 批准号:
8926527 - 财政年份:2013
- 资助金额:
$ 75.93万 - 项目类别:
Automated Problem and Allergy Lists Enrichment Based on High Accuracy Information Extraction from the Electronic Health Record
基于电子健康记录中高精度信息提取的自动化问题和过敏列表丰富
- 批准号:
9357564 - 财政年份:2013
- 资助金额:
$ 75.93万 - 项目类别:
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
THE NNTC COLLECTS, STORE, AND PROVIDE CLINICAL DATA AND WELL CHARACTERIZED BIOLOGICAL SPECIMENS, INCLUDING POST-MORTEM TISSUE FROM STUDY VOLUNTEERS AND/OR ORGAN DONORS WITH HIV AS WELL AS HIV-NEGATIVE
NNTC 收集、存储和提供临床数据和特征明确的生物样本,包括来自研究志愿者和/或艾滋病毒感染者和艾滋病毒阴性者的器官捐献者的死后组织
- 批准号:
10934920 - 财政年份:2023
- 资助金额:
$ 75.93万 - 项目类别:
THE NNTC COLLECTS, STORE, AND PROVIDE CLINICAL DATA AND WELL CHARACTERIZED BIOLOGICAL SPECIMENS, INCLUDING POST-MORTEM TISSUE FROM STUDY VOLUNTEERS AND/OR ORGAN DONORS WITH HIV AS WELL AS HIV-NEGATIVE
NNTC 收集、存储和提供临床数据和特征明确的生物样本,包括来自研究志愿者和/或艾滋病毒感染者和艾滋病毒阴性者的器官捐献者的死后组织
- 批准号:
10934926 - 财政年份:2023
- 资助金额:
$ 75.93万 - 项目类别:
THE NNTC COLLECTS, STORE, AND PROVIDE CLINICAL DATA AND WELL CHARACTERIZED BIOLOGICAL SPECIMENS, INCLUDING POST-MORTEM TISSUE FROM STUDY VOLUNTEERS AND/OR ORGAN DONORS WITH HIV AS WELL AS HIV-NEGATIVE
NNTC 收集、存储和提供临床数据和特征明确的生物样本,包括来自研究志愿者和/或艾滋病毒感染者和艾滋病毒阴性者的器官捐献者的死后组织
- 批准号:
10945539 - 财政年份:2023
- 资助金额:
$ 75.93万 - 项目类别:
THE NNTC COLLECTS, STORE, AND PROVIDE CLINICAL DATA AND WELL CHARACTERIZED BIOLOGICAL SPECIMENS, INCLUDING POST-MORTEM TISSUE FROM STUDY VOLUNTEERS AND/OR ORGAN DONORS WITH HIV AS WELL AS HIV-NEGATIVE
NNTC 收集、存储和提供临床数据和特征明确的生物样本,包括来自研究志愿者和/或艾滋病毒感染者和艾滋病毒阴性者的器官捐献者的死后组织
- 批准号:
10934927 - 财政年份:2023
- 资助金额:
$ 75.93万 - 项目类别:
THE NNTC COLLECTS, STORE, AND PROVIDE CLINICAL DATA AND WELL CHARACTERIZED BIOLOGICAL SPECIMENS, INCLUDING POST-MORTEM TISSUE FROM STUDY VOLUNTEERS AND/OR ORGAN DONORS WITH HIV AS WELL AS HIV-NEGATIVE
NNTC 收集、存储和提供临床数据和特征明确的生物样本,包括来自研究志愿者和/或艾滋病毒感染者和艾滋病毒阴性者的器官捐献者的死后组织
- 批准号:
10945543 - 财政年份:2023
- 资助金额:
$ 75.93万 - 项目类别:
Core B-Clinical Data Collection and Management Core
核心 B-临床数据收集和管理核心
- 批准号:
10555683 - 财政年份:2023
- 资助金额:
$ 75.93万 - 项目类别:
Point-of-care prognostic modeling of PTSD risk after traumatic event exposure using digital biomarkers and clinical data from electronic health records in the emergency department setting (PREDICT)
使用数字生物标志物和急诊科电子健康记录中的临床数据对创伤事件暴露后的 PTSD 风险进行护理点预后建模 (PREDICT)
- 批准号:
10884738 - 财政年份:2023
- 资助金额:
$ 75.93万 - 项目类别:
Analyzing and Interpreting PRO-CTCAE with CTCAE and Other Clinical Data to Characterize Drug Tolerability
使用 CTCAE 和其他临床数据分析和解释 PRO-CTCAE,以表征药物耐受性
- 批准号:
10884103 - 财政年份:2023
- 资助金额:
$ 75.93万 - 项目类别:
THE NNTC COLLECTS, STORE, AND PROVIDE CLINICAL DATA AND WELL CHARACTERIZED BIOLOGICAL SPECIMENS, INCLUDING POST-MORTEM TISSUE FROM STUDY VOLUNTEERS AND/OR ORGAN DONORS WITH HIV AS WELL AS HIV-NEGATIVE
NNTC 收集、存储和提供临床数据和特征明确的生物样本,包括来自研究志愿者和/或艾滋病毒感染者和艾滋病毒阴性者的器官捐献者的死后组织
- 批准号:
10934921 - 财政年份:2023
- 资助金额:
$ 75.93万 - 项目类别:
STSS TASK ORDER - NATIONAL CLINICAL DATA COLLABORATIVE (NACDAC)
STSS 任务单 - 国家临床数据协作组织 (NACDAC)
- 批准号:
10949868 - 财政年份:2023
- 资助金额:
$ 75.93万 - 项目类别:














{{item.name}}会员




