Biomimetic alveolar interstitium model for investigation of nanomaterials-induced fibrogenesis
用于研究纳米材料诱导的纤维发生的仿生肺泡间质模型
基本信息
- 批准号:9232710
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-23 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAffectAlveolarAnimalsBiomimeticsBreathingCarbon NanotubesCell ProliferationCellsCharacteristicsCoculture TechniquesCollagenCuesDevelopmental ProcessDimensionsDiseaseElectronicsEngineeringEnvironmental HazardsEpithelialExhibitsExposure toExtracellular MatrixFibroblastsHealthHealth SciencesHealthcareHumanImmuneIn VitroIntercellular FluidInterdisciplinary StudyInvestigationKnowledgeLife Cycle StagesLiquid substanceLungMarketingMechanicsMediatingMethodsMicrofluidicsMineralsModelingMovementNanotechnologyNanotopographyNational Institute for Occupational Safety and HealthNoduleNuclearPathologic ProcessesPhenotypePhysiologicalPhysiological ProcessesProductionPulmonary FibrosisReportingResearch PersonnelResourcesRisk AssessmentSeriesShapesSurfaceSustainable DevelopmentTechniquesTechnologyTimeTissuesToxic effectToxicity TestsToxicologyUniversitiesWest VirginiaWorkbasecell behaviorcollegecytotoxicityeffective therapyexposed human populationfibrogenesisimprovedin vitro Modelin vivointerstitialnanoengineeringnanomaterialsnanoscalenanotoxicologynovelpolydimethylsiloxaneresponseshear stress
项目摘要
PROJECT SUMMARY/ABSTRACT
While the rapidly evolving nanotechnology has shown promise in electronics, energy, healthcare and many
other fields, there is an increasing concern about the adverse health consequences of engineered
nanomaterials. In vivo studies have shown that inhaled carbon nanotubes can rapidly enter the lung
interstitium to stimulate collagen production and induce progressive interstitial lung fibrosis, which is a fatal and
incurable disease with no known effective treatment. To evaluate the toxicity of nanomaterials, animal studies
are necessary but costly, time-consuming and facility limited; while the majority of current in vitro models suffer
from a series of drawbacks, most importantly, they lack characteristics of in vivo microenvironment, leading to
losses of critical in vivo cell phenotypes and responsiveness. There is, therefore, a critical need to develop in
vitro models of physiological relevance to provide reliable, rapid and inexpensive methods for toxicology
studies and risk assessment of nanomaterials. The extracellular matrix of lung interstitium manifests significant
nanoscale topographies, exhibits various degrees of stiffness, and is enriched with interstitial fluids. The
physiological breathing movements also provide cyclic mechanical strain. Although the physical (substrate
nanotopography and stiffness) and mechanical (fluid-induced forces and mechanical strain) cues critically
influence numerous developmental, physiological and pathological processes in vivo and have a profound
influence on cell phenotype and function in vitro, there has been no effort reported on integrating these factors
into a single platform for toxicology studies. Our hypothesis is that the interstitial fibrotic response to
nanomaterials in vitro can be more accurately evaluated in a physiologically relevant microenvironment.
Therefore, the objective of this project is to develop an alveolar interstitium model integrated with the physical
and mechanical cues of physiological relevance to investigate nanomaterials induced lung fibrogenesis. We
have assembled an interdisciplinary research team to carry out nanotoxicology studies both in vivo and in vitro,
and provided strong evidence that nanotopography, stiffness and fluidic shear stress have profound influences
on cell behavior. Based on the compelling preliminary results, we propose two Specific Aims in this project: (1)
dissect substrate nanotopography and stiff modulated human lung fibroblast sensing nanomaterials, and (2)
build a microfluidic platform integrated with key physical, mechanical and structural characteristics of lung
interstitium to assess nanomaterials induced fibrogenesis. Successful completion of this project will advance
our fundamental understanding of physical and mechanical modulation of cell behavior and develops a novel,
biomimetic interstitium microenvironment to advances over the “classic” in vitro cytotoxicity methods. This
biomimetic model is expected to fill the knowledge and technology gaps between current in vitro models and
animal studies, and potentially promote sustainable development of nanotechnology.
项目总结/摘要
虽然快速发展的纳米技术在电子,能源,医疗保健和许多领域显示出了希望,
在其他领域,人们越来越关注工程技术对健康的不利影响。
纳米材料体内研究表明,吸入的碳纳米管可以迅速进入肺部
地塞米松刺激胶原蛋白的产生并诱导进行性肺间质纤维化,这是一种致命的,
无法治愈的疾病,没有已知的有效治疗方法。为了评估纳米材料的毒性,动物研究
是必要的,但昂贵,耗时和设施有限;而目前的大多数体外模型遭受
从一系列的缺点,最重要的是,他们缺乏在体内微环境的特点,导致
关键的体内细胞表型和反应性的丧失。因此,迫切需要发展
生理相关的体外模型,为毒理学提供可靠、快速和廉价的方法
纳米材料的研究和风险评估。肺组织细胞外基质的表达与肺组织病理学改变密切相关,
纳米级形貌,表现出不同程度的刚度,并富含间隙液。的
生理呼吸运动也提供周期性机械应变。虽然物理(基板
纳米形貌和刚度)和机械(流体诱导力和机械应变)线索
影响体内许多发育、生理和病理过程,
在体外对细胞表型和功能的影响,还没有关于整合这些因子的努力的报道
变成一个单一的毒理学研究平台。我们的假设是,间质纤维化反应,
体外纳米材料可以在生理相关的微环境中更准确地评估。
因此,本研究的目的是建立一个与物理模型相结合的肺泡灌洗液模型。
和生理相关性的机械线索,以研究纳米材料诱导的肺纤维化。我们
组建了一个跨学科的研究团队,进行体内和体外的纳米毒理学研究,
并提供了强有力的证据表明,纳米形貌,刚度和流体剪切应力有深远的影响,
on cell细胞behavior行为.基于令人信服的初步结果,我们提出了本项目的两个具体目标:(1)
解剖基底纳米形貌和刚性调制的人肺成纤维细胞传感纳米材料,和(2)
构建一个集成了肺关键物理、机械和结构特征的微流控平台
评估纳米材料诱导的纤维化。该项目的顺利完成将推动
我们对细胞行为的物理和机械调节的基本理解,并开发了一种新的,
仿生氚微环境的研究进展超过了“经典”的体外细胞毒性方法。这
仿生模型有望填补目前体外模型之间的知识和技术空白,
动物研究,并有可能促进纳米技术的可持续发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Yang其他文献
Ultra-stablenbsp; aqueousnbsp; foamnbsp; stabilizednbsp; bynbsp; water-solublenbsp; alkylnbsp; acrylate crosspolymer
超稳定
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Quanhua Deng;Yong Yang;Xulong Cao;Qiwei Wang - 通讯作者:
Qiwei Wang
Ultra-stable  aqueous  foam  stabilized  by  water-soluble  alkyl  acrylate crosspolymer
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:
- 作者:
Quanhua Deng;Yong Yang;Xulong Cao;Qiwei Wang; - 通讯作者:
Unsupervised multiphase color-texture image segmentation based on variational formulation and multilayer graph
基于变分公式和多层图的无监督多相颜色纹理图像分割
- DOI:
10.1016/j.imavis.2013.12.006 - 发表时间:
2014-02 - 期刊:
- 影响因子:0
- 作者:
Yong Yang;Ling Guo;Tianjiang Wang - 通讯作者:
Tianjiang Wang
Yong Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Yang', 18)}}的其他基金
Optic-nerve-head (ONH) Chips for Glaucomatous Neurodegeneration
用于治疗青光眼神经变性的视神经头 (ONH) 芯片
- 批准号:
10439107 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Biomimetic Alveolar Interstitium Model for Investigation of Nanomaterials-induced Fibrogenesis
用于研究纳米材料诱导纤维形成的仿生肺泡间质模型
- 批准号:
9581765 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
A Spatial Agent-Based Model of Walking Behavior in Cities
基于空间代理的城市步行行为模型
- 批准号:
8321022 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Studentship














{{item.name}}会员




