Biomimetic Alveolar Interstitium Model for Investigation of Nanomaterials-induced Fibrogenesis

用于研究纳米材料诱导纤维形成的仿生肺泡间质模型

基本信息

  • 批准号:
    9581765
  • 负责人:
  • 金额:
    $ 28.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-23 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT While the rapidly evolving nanotechnology has shown promise in electronics, energy, healthcare and many other fields, there is an increasing concern about the adverse health consequences of engineered nanomaterials. In vivo studies have shown that inhaled carbon nanotubes can rapidly enter the lung interstitium to stimulate collagen production and induce progressive interstitial lung fibrosis, which is a fatal and incurable disease with no known effective treatment. To evaluate the toxicity of nanomaterials, animal studies are necessary but costly, time-consuming and facility limited; while the majority of current in vitro models suffer from a series of drawbacks, most importantly, they lack characteristics of in vivo microenvironment, leading to losses of critical in vivo cell phenotypes and responsiveness. There is, therefore, a critical need to develop in vitro models of physiological relevance to provide reliable, rapid and inexpensive methods for toxicology studies and risk assessment of nanomaterials. The extracellular matrix of lung interstitium manifests significant nanoscale topographies, exhibits various degrees of stiffness, and is enriched with interstitial fluids. The physiological breathing movements also provide cyclic mechanical strain. Although the physical (substrate nanotopography and stiffness) and mechanical (fluid-induced forces and mechanical strain) cues critically influence numerous developmental, physiological and pathological processes in vivo and have a profound influence on cell phenotype and function in vitro, there has been no effort reported on integrating these factors into a single platform for toxicology studies. Our hypothesis is that the interstitial fibrotic response to nanomaterials in vitro can be more accurately evaluated in a physiologically relevant microenvironment. Therefore, the objective of this project is to develop an alveolar interstitium model integrated with the physical and mechanical cues of physiological relevance to investigate nanomaterials induced lung fibrogenesis. We have assembled an interdisciplinary research team to carry out nanotoxicology studies both in vivo and in vitro, and provided strong evidence that nanotopography, stiffness and fluidic shear stress have profound influences on cell behavior. Based on the compelling preliminary results, we propose two Specific Aims in this project: (1) dissect substrate nanotopography and stiff modulated human lung fibroblast sensing nanomaterials, and (2) build a microfluidic platform integrated with key physical, mechanical and structural characteristics of lung interstitium to assess nanomaterials induced fibrogenesis. Successful completion of this project will advance our fundamental understanding of physical and mechanical modulation of cell behavior and develops a novel, biomimetic interstitium microenvironment to advances over the “classic” in vitro cytotoxicity methods. This biomimetic model is expected to fill the knowledge and technology gaps between current in vitro models and animal studies, and potentially promote sustainable development of nanotechnology.
项目概要/摘要 虽然快速发展的纳米技术已在电子、能源、医疗保健和许多领域显示出前景 在其他领域,人们越来越担心工程技术对健康造成的不利后果 纳米材料。体内研究表明,吸入碳纳米管可以快速进入肺部 间质刺激胶原蛋白产生并诱导进行性间质性肺纤维化,这是一种致命的、 没有已知有效治疗方法的不治之症。为了评估纳米材料的毒性,动物研究 是必要的,但成本高昂、耗时且设施有限;而目前大多数体外模型都受到影响 存在一系列的缺点,最重要的是它们缺乏体内微环境的特征,导致 关键体内细胞表型和反应性的丧失。因此,迫切需要开发 生理相关的体外模型为毒理学提供可靠、快速且廉价的方法 纳米材料的研究和风险评估。肺间质细胞外基质表现显着 纳米级的形貌,表现出不同程度的刚度,并且富含间质液。这 生理呼吸运动也提供周期性机械应变。尽管物理(基材 纳米形貌和刚度)和机械(流体引起的力和机械应变)至关重要 影响体内众多的发育、生理和病理过程,并具有深远的影响 体外对细胞表型和功能的影响,尚未有关于整合这些因素的报道 整合到毒理学研究的单一平台中。我们的假设是间质纤维化反应 可以在生理相关的微环境中更准确地评估体外纳米材料。 因此,该项目的目标是开发一种与物理结合的肺泡间质模型 和生理相关的机械线索来研究纳米材料诱导的肺纤维化。我们 组建了一个跨学科研究团队,开展体内和体外纳米毒理学研究, 并提供了强有力的证据表明纳米形貌、刚度和流体剪切应力具有深远的影响 关于细胞行为。基于令人信服的初步结果,我们提出了该项目的两个具体目标:(1) 解剖基底纳米形貌和刚性调制人肺成纤维细胞传感纳米材料,以及(2) 构建集成肺关键物理、机械和结构特征的微流控平台 间质来评估纳米材料诱导的纤维发生。该项目的顺利完成将推进 我们对细胞行为的物理和机械调节的基本理解,并开发了一种新颖的、 仿生间质微环境比“经典”体外细胞毒性方法取得了进步。这 仿生模型有望填补当前体外模型和生物模型之间的知识和技术空白。 动物研究,并有可能促进纳米技术的可持续发展。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microphysiological Systems: Design, Fabrication, and Applications.
  • DOI:
    10.1021/acsbiomaterials.9b01667
  • 发表时间:
    2020-06-08
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Wang K;Man K;Liu J;Liu Y;Chen Q;Zhou Y;Yang Y
  • 通讯作者:
    Yang Y
Biophysical Regulation of Cell Behavior-Cross Talk between Substrate Stiffness and Nanotopography.
  • DOI:
    10.1016/j.eng.2017.01.014
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Y;Wang K;Gu X;Leong KW
  • 通讯作者:
    Leong KW
Piezo1 plays a role in optic nerve head astrocyte reactivity.
  • DOI:
    10.1016/j.exer.2021.108445
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Liu J;Yang Y;Liu Y
  • 通讯作者:
    Liu Y
Dimensionality-Dependent Mechanical Stretch Regulation of Cell Behavior.
  • DOI:
    10.1021/acsami.2c01266
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Kun Man;Jiafeng Liu;Khang Phan;Kai Wang;Jung Yeon Lee;Xiankai Sun;Michael’s Story;D. Saha;Jun Liao;Hamid Sadat;Yong Yang
  • 通讯作者:
    Kun Man;Jiafeng Liu;Khang Phan;Kai Wang;Jung Yeon Lee;Xiankai Sun;Michael’s Story;D. Saha;Jun Liao;Hamid Sadat;Yong Yang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yong Yang其他文献

Ultra-stablenbsp; aqueousnbsp; foamnbsp; stabilizednbsp; bynbsp; water-solublenbsp; alkylnbsp; acrylate crosspolymer
超稳定
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Quanhua Deng;Yong Yang;Xulong Cao;Qiwei Wang
  • 通讯作者:
    Qiwei Wang
Ultra-stable  aqueous  foam  stabilized  by  water-soluble  alkyl  acrylate crosspolymer
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
  • 作者:
    Quanhua Deng;Yong Yang;Xulong Cao;Qiwei Wang;
  • 通讯作者:
Unsupervised multiphase color-texture image segmentation based on variational formulation and multilayer graph
基于变分公式和多层图的无监督多相颜色纹理图像分割
  • DOI:
    10.1016/j.imavis.2013.12.006
  • 发表时间:
    2014-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yong Yang;Ling Guo;Tianjiang Wang
  • 通讯作者:
    Tianjiang Wang

Yong Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yong Yang', 18)}}的其他基金

Optic-nerve-head (ONH) Chips for Glaucomatous Neurodegeneration
用于治疗青光眼神经变性的视神经头 (ONH) 芯片
  • 批准号:
    10439107
  • 财政年份:
    2022
  • 资助金额:
    $ 28.08万
  • 项目类别:
Biomimetic alveolar interstitium model for investigation of nanomaterials-induced fibrogenesis
用于研究纳米材料诱导的纤维发生的仿生肺泡间质模型
  • 批准号:
    9232710
  • 财政年份:
    2016
  • 资助金额:
    $ 28.08万
  • 项目类别:
A Spatial Agent-Based Model of Walking Behavior in Cities
基于空间代理的城市步行行为模型
  • 批准号:
    8321022
  • 财政年份:
    2011
  • 资助金额:
    $ 28.08万
  • 项目类别:

相似海外基金

Gain-of-function toxicity in alpha-1 antitrypsin deficient type 2 alveolar epithelial cells
α-1 抗胰蛋白酶缺陷型 2 型肺泡上皮细胞的功能获得毒性
  • 批准号:
    10751760
  • 财政年份:
    2024
  • 资助金额:
    $ 28.08万
  • 项目类别:
The role of alveolar macrophages and regulatory pathways in post-transplant lung inflammation.
肺泡巨噬细胞和调节途径在移植后肺部炎症中的作用。
  • 批准号:
    23K08315
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
  • 批准号:
    10677169
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
Mechanistic studies of the genetic contribution of desmoplakin to pulmonary fibrosis in alveolar type 2 cells
桥粒斑蛋白对肺泡2型细胞肺纤维化的遗传贡献机制研究
  • 批准号:
    10736228
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
Pilot Studies of PAX3-FOXO1 Fusions Proteins in Alveolar Rhabdomyosarcoma
PAX3-FOXO1 融合蛋白在肺泡横纹肌肉瘤中的初步研究
  • 批准号:
    10726763
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
Novel alveolar mechanisms of hypoxemia in hepatopulmonary syndrome
肝肺综合征低氧血症的新肺泡机制
  • 批准号:
    10718446
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
Utilizing induced pluripotent stem cells to study the role of alveolar type 2 cell dysfunction in pulmonary fibrosis
利用诱导多能干细胞研究肺泡2型细胞功能障碍在肺纤维化中的作用
  • 批准号:
    10591174
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
Injury of blood brain and alveolar-endothelial barriers caused by alcohol and electronic cigarettes via purinergic receptor signaling
酒精和电子烟通过嘌呤受体信号传导引起血脑和肺泡内皮屏障损伤
  • 批准号:
    10638221
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
Alveolar Epithelial Cell Dysfunction Induced By Flavored E-Cigarette Aerosols
加味电子烟气雾剂引起的肺泡上皮细胞功能障碍
  • 批准号:
    10770080
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
Delineating the role of let-7 microRNA on lung AT2 cell homeostasis, alveolar regeneration, and interstitial lung disease
描述let-7 microRNA对肺AT2细胞稳态、肺泡再生和间质性肺疾病的作用
  • 批准号:
    10634881
  • 财政年份:
    2023
  • 资助金额:
    $ 28.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了