Molecular analyses of toxin nanopore structural dynamics
毒素纳米孔结构动力学的分子分析
基本信息
- 批准号:9095733
- 负责人:
- 金额:$ 24.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingActive SitesAddressAnthrax diseaseAntigensBacillus anthracisBacteriaBacterial ToxinsBindingBinding SitesBiological ModelsBiosensorCaliberCell physiologyCellsCenters for Disease Control and Prevention (U.S.)ChargeChemicalsComplexContractsCryoelectron MicroscopyCytosolCytotoxinDetectionDevelopmentDistalDockingDrug Delivery SystemsElectron MicroscopyElectrophysiology (science)ElectrostaticsEncapsulatedEndocytosisEnergy-Generating ResourcesEngineeringGenerationsGeneticGoalsHeadHeterophile AntigensKnowledgeLeadLearningLengthLipid BilayersMass Spectrum AnalysisMechanicsMembraneMembrane PotentialsMethodsModelingMolecularMolecular ConformationMolecular MachinesMovementMutationOrganellesPathogenesisPeptidesPhenylalaninePhylogenetic AnalysisProcessProtein SecretionProtein translocationProteinsProton-Motive ForceProtonsReactionResolutionSideSiteStructureSystemTailTechnologyTestingThermodynamicsToxinTranslatingVariantVirulence Factorsanthrax lethal factoranthrax toxinaqueousbasebiophysical modelconformational conversioncrosslinkcytotoxicdeprotonationdriving forceedema factorinsightmonomermutantnanoporenovelparticlepathogenic bacteriapeptide drugpolypeptideprotonationpublic health relevancestereochemistrytranslocase
项目摘要
DESCRIPTION (provided by applicant): Proteins move across lipid bilayers through membrane-embedded transporters, called translocase channels. These types of transporters are critical to the formation of membrane-encapsulated organelles and protein secretion. Translocase channels are also used by pathogenic bacteria to deliver cytotoxic proteins and peptides into eukaryotic host cells. The molecular basis of protein translocation, however, is poorly understood. Several models have been invoked to describe how a chemical or transmembrane potential gradient energy source can be transduced into a directed mechanical force that promotes unfolding and translocation. On one hand, an extended-chain model considers the channel to be a static structure through which the translocating peptide translocates as an extended chain with little helical structure. In this model, net movement of the
peptide is explained by a proton-powered Brownian ratchet. On the other hand, the helix-compaction model hypothesizes that the translocating chain contracts from an extended-chain conformation to a helical one. This conformational transition is coordinated by an allosteric conformational change in the channel that can accommodate helical structure. The allosteric transition may be triggered by proton binding and dynamic transitions in the polypeptide clamp active sites located along the length of the transporter. Using anthrax toxin as model system, this proposal seeks to distinguish these two models using high-resolution electron microscopy (EM), single-channel electrophysiology, and cross-linking mass spectrometry (MS). The bacterium, Bacillus anthracis secretes the three-protein toxin, anthrax toxin, which is composed of protective antigen (PA), lethal factor (LF), and edema factor (EF). PA is the translocase channel that delivers the enzymatic factors, LF and EF, into the host cytosol. PA first co-assembles with LF and EF to form an oligomeric toxin complex that is endocytosed. Within the endosomal membrane, PA inserts and forms a narrow aqueous passageway through which LF and EF unfold and translocate through to reach the other side. Polypeptide clamp sites within the PA channel have been found to be dynamic active sites, which can bind and release the translocating chain of EF and LF. A recent high- resolution electron microscopy structure has revealed a narrow configuration of the central phenylalanine clamp (ϕ clamp) site. However, this structure does not account for an alternate configuration of the clamp anticipated from single-channel electrophysiology and genetic co-variation of putative contacting residues in the ϕ-clamp loop. These configurations will be analyzed structurally and thermodynamically by mutational and pH-dependent studies of the channel. To gain insight on the structural configurations of the translocating LF inside the channel, conformationally locked substrates will be trapped for detailed structural analysis. Relevance: Insight on the mechanism of protein translocation is of translational relevance to the development of novel methods to neutralize the toxin and also to advancing technologies, which exploit toxins as nanopore biosensors and versatile delivery vehicles for heterologous antigens and cytotoxins into cells.
描述(由申请人提供):蛋白质通过膜包埋转运蛋白(称为转位酶通道)跨脂质双层移动。这些类型的转运蛋白对膜包封细胞器的形成和蛋白质分泌至关重要。易位酶通道也被病原菌用于将细胞毒性蛋白质和肽递送到真核宿主细胞中。然而,蛋白质易位的分子基础知之甚少。已经调用了几个模型来描述化学或跨膜电位梯度能量源如何可以被转换成促进解折叠和易位的定向机械力。一方面,延伸链模型认为通道是一个静态结构,通过该通道,易位肽作为具有很少螺旋结构的延伸链易位。在这个模型中,
肽是由质子动力的布朗棘轮解释。另一方面,螺旋压缩模型假设易位链从伸展链构象收缩为螺旋构象。这种构象转变是由通道中的变构构象变化协调的,该变构构象变化可以容纳螺旋结构。变构转换可以由质子结合和位于沿着转运蛋白长度的多肽钳活性位点中的动态转换触发。以炭疽毒素为模型系统,本研究试图利用高分辨电子显微镜(EM)、单通道电生理学和交联质谱(MS)来区分这两种模型。炭疽杆菌分泌由保护性抗原(PA)、致死因子(LF)和水肿因子(EF)组成的三蛋白毒素-炭疽毒素。PA是将酶因子LF和EF递送到宿主细胞质中的移位酶通道。PA首先与LF和EF共组装以形成内吞的寡聚毒素复合物。在内体膜内,PA插入并形成狭窄的水通道,LF和EF通过该水通道展开并移位通过该水通道到达另一侧。PA通道内的多肽钳位点被发现是动态活性位点,可以结合和释放EF和LF的转运链。最近的高分辨率电子显微镜结构揭示了中央苯丙氨酸钳(Phenylalanine clamp)位点的狭窄构型。然而,这种结构并不能解释从单通道电生理学和假定的接触残基的遗传共变异中预期的钳环的替代构型。这些配置将通过对通道的突变和pH依赖性研究进行结构和化学分析。为了深入了解通道内移位LF的结构构型,将捕获构象锁定的底物以进行详细的结构分析。相关性:对蛋白质易位机制的深入了解与开发中和毒素的新方法以及推进技术具有翻译相关性,这些技术利用毒素作为纳米孔生物传感器和用于异源抗原和细胞毒素进入细胞的多功能递送载体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID ROBINSON GOODLETT其他文献
DAVID ROBINSON GOODLETT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID ROBINSON GOODLETT', 18)}}的其他基金
Molecular analyses of toxin nanopore structural dynamics
毒素纳米孔结构动力学的分子分析
- 批准号:
9245663 - 财政年份:2016
- 资助金额:
$ 24.45万 - 项目类别:
MULTI-TIERED PROTEOMIC COMPUTE CLUSTER: INFECTIOUS DISEASE
多层蛋白质组计算集群:传染病
- 批准号:
7335339 - 财政年份:2006
- 资助金额:
$ 24.45万 - 项目类别:
MULTI-TIERED PROTEOMIC COMPUTE CLUSTER: PARKINSON'S DISEASE
多层蛋白质组计算集群:帕金森病
- 批准号:
7335342 - 财政年份:2006
- 资助金额:
$ 24.45万 - 项目类别:
MULTI-TIERED PROTEOMIC COMPUTE CLUSTER: DIABETES
多层蛋白质组计算集群:糖尿病
- 批准号:
7335341 - 财政年份:2006
- 资助金额:
$ 24.45万 - 项目类别:
MULTI-TIERED PROTEOMIC COMPUTE CLUSTER: BIOCHEMISTRY
多层蛋白质组计算集群:生物化学
- 批准号:
7335340 - 财政年份:2006
- 资助金额:
$ 24.45万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 24.45万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 24.45万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 24.45万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 24.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 24.45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 24.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 24.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 24.45万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 24.45万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 24.45万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




