Predicting Internet-Based Treatment Response for Major Depressive Disorder

预测重度抑郁症基于互联网的治疗反应

基本信息

  • 批准号:
    9314157
  • 负责人:
  • 金额:
    $ 36.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-08 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

As many as 53% of students report experiencing depression during college, and these depressive episodes are associated with a higher frequency of academic problems, comorbidity, and suicide. Although there are effective options for treatment, the majority of individuals (>70%) do not pursue services, and even for those who do, response rates remain modest (~40-50%). As a means of increasing accessibility to treatment, internet-based interventions for depression have been developed and tested. Despite increased availability, response to internet-based interventions continues to vary substantially, and failed treatment often contributes to persistence and worsening of symptoms. Therefore, identifying individuals with a high likelihood of responding to internet-based treatment would represent a major advance and address a critical unmet need. In recent years, promising approaches for testing the heterogeneity of the treatment effects – delineating which individuals are likely to respond to a given treatment – have been developed. However, their use for identifying predictors of treatment response in depression remains unclear. To address this unmet need, the proposed study will test a new, cost-effective, and feasibly-scaled method of predicting differential treatment response following internet-based cognitive behavioral therapy (iCBT) for depression in a large, representative college sample (Boston Consortium of Colleges and Universities which includes 7 schools). Members of the consortium have committed to screening all incoming freshmen (N = ~14,000) through a rigorous online assessment and to offer iCBT to students with elevated levels of depressive symptoms (i.e., minor or major depression). The following steps will be pursued. First, in the initial phase of the study, freshmen students from the Boston Consortium will be screened for depression through an online survey, and they also will complete web-based neurocognitive tasks probing key mechanisms underpinning depression. Depressed students will be invited to enroll in iCBT, and a predictive algorithm will be developed based on assessments across different units of analysis (i.e., clinical characteristics, neurocognitive indices) to identify iCBT responders. Second, after the development phase, an independent sample of college students will be recruited to validate the predictive algorithm. This validation phase will use clinical indicators and neurocognitive data. Additionally, functional magnetic resonance imaging (fMRI) data targeting key mechanisms within the Research Domain Criteria (RDoC) will be acquired from a subset of participants. Neural data will be integrated to determine whether they improve the predictive algorithm. Third, data across independent samples will be combined, which will increase power to refine our predictive model for both acute and sustained response. In summary, there are alarming rates of depression among college students, and only a minority of students utilize mental health services. The proposed research will personalize our approach to depression treatment, which, ultimately, will improve effectiveness and better inform mental health care across college campuses.
多达53%的学生报告在大学期间经历过抑郁症,这些抑郁症患者 发作与更高频率的学业问题、合并症和自杀相关。虽然 有有效的治疗选择,大多数人(>70%)不寻求服务,甚至 对于那些这样做的人,答复率仍然不高(约40-50%)。作为一种增加获得 在治疗方面,已经开发和测试了基于互联网的抑郁症干预措施。尽管增加了 可用性,对基于互联网的干预措施的反应仍然存在很大差异,失败的治疗往往 有助于症状的持续和恶化。因此,确定具有高可能性的个体 对基于互联网的治疗作出反应将是一个重大进步,并解决了一个尚未满足的关键需求。 近年来,有希望的方法来测试治疗效果的异质性-描绘 哪些个体可能对给定的治疗有反应-已经被开发出来。然而,它们的用途 确定抑郁症治疗反应的预测因子仍不清楚。为了满足这一未满足的需求, 一项拟议的研究将测试一种新的、具有成本效益的、规模可行的预测差别待遇的方法 在一个大的,有代表性的,基于互联网的认知行为疗法(iCBT)治疗抑郁症后的反应, 大学样本(波士顿大学联盟,包括7所学校)。成员 联盟已承诺通过严格的在线筛选所有新生(N = ~ 14,000) 评估并为抑郁症状水平升高的学生提供iCBT(即,轻微或重大 抑郁症)。将采取以下步骤。首先,在研究的初始阶段, 波士顿联盟将通过在线调查进行抑郁症筛查,他们还将完成 基于网络的神经认知任务,探索抑郁症的关键机制。抑郁的学生将 被邀请参加iCBT,并将根据评估开发预测算法, 不同的分析单元(即,临床特征、神经认知指数)以鉴定iCBT应答者。 第二,开发阶段结束后,将招募独立的大学生样本进行验证 预测算法。该验证阶段将使用临床指标和神经认知数据。此外,本发明还 针对研究领域内关键机制的功能性磁共振成像(fMRI)数据 标准(RDoC)将从参与者的子集中获取。神经数据将被整合以确定 他们是否改进了预测算法。第三,独立样本的数据将被合并, 这将提高我们改进急性和持续反应预测模型的能力。总的来说, 在大学生中,抑郁症的发病率令人担忧,只有少数学生利用心理治疗。 保健服务这项拟议中的研究将使我们的抑郁症治疗方法个性化, 最终,将提高效率,并更好地为整个大学校园的精神卫生保健提供信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RANDY PATRICK AUERBACH其他文献

RANDY PATRICK AUERBACH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RANDY PATRICK AUERBACH', 18)}}的其他基金

Targeting adolescent depression symptoms using network-based real-time fMRI neurofeedback and mindfulness meditation
使用基于网络的实时功能磁共振成像神经反馈和正念冥想针对青少年抑郁症状
  • 批准号:
    10581837
  • 财政年份:
    2023
  • 资助金额:
    $ 36.47万
  • 项目类别:
Interpersonal Stress, Social Media, and Risk for Adolescent Suicidal Thoughts and Behaviors
人际压力、社交媒体以及青少年自杀想法和行为的风险
  • 批准号:
    10815112
  • 财政年份:
    2023
  • 资助金额:
    $ 36.47万
  • 项目类别:
Social Processing Deficits in Remitted Adolescent Depression
青少年抑郁症缓解后的社会处理缺陷
  • 批准号:
    10513829
  • 财政年份:
    2019
  • 资助金额:
    $ 36.47万
  • 项目类别:
Social Processing Deficits in Remitted Adolescent Depression
青少年抑郁症缓解后的社会处理缺陷
  • 批准号:
    10292961
  • 财政年份:
    2019
  • 资助金额:
    $ 36.47万
  • 项目类别:
Social Processing Deficits in Remitted Adolescent Depression
青少年抑郁症缓解后的社会处理缺陷
  • 批准号:
    10064641
  • 财政年份:
    2019
  • 资助金额:
    $ 36.47万
  • 项目类别:
Social Processing Deficits in Remitted Adolescent Depression
青少年抑郁症缓解后的社会处理缺陷
  • 批准号:
    9908456
  • 财政年份:
    2019
  • 资助金额:
    $ 36.47万
  • 项目类别:
Predicting Internet-Based Treatment Response for Major Depressive Disorder
预测重度抑郁症基于互联网的治疗反应
  • 批准号:
    9624631
  • 财政年份:
    2016
  • 资助金额:
    $ 36.47万
  • 项目类别:
Predicting Internet-Based Treatment Response for Major Depressive Disorder
预测重度抑郁症基于互联网的治疗反应
  • 批准号:
    9328159
  • 财政年份:
    2016
  • 资助金额:
    $ 36.47万
  • 项目类别:
Examination of Reward Processing in the Treatment of Adolescent Major Depression
奖励处理在青少年重度抑郁症治疗中的检验
  • 批准号:
    8641726
  • 财政年份:
    2013
  • 资助金额:
    $ 36.47万
  • 项目类别:
Examination of Reward Processing in the Treatment of Adolescent Major Depression
奖励处理在青少年重度抑郁症治疗中的检验
  • 批准号:
    8509096
  • 财政年份:
    2013
  • 资助金额:
    $ 36.47万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了