Online Raman Diagnostics of Oncometabolites
肿瘤代谢物的在线拉曼诊断
基本信息
- 批准号:9147682
- 负责人:
- 金额:$ 36.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBiological AssayBiological MarkersCapillary ElectrophoresisCellsChemical StructureChemicalsChromatographyCitric Acid CycleComb animal structureComplexCoupledDataDetectionDevelopmentDevelopmental ProcessDiagnosisDiagnosticDiseaseExhibitsExplosionFingerprintGasesGene ExpressionGene ProteinsGlycolysisGoalsGoldInvestigationInvestmentsIsomerismLabelLaboratoriesLinkLiquid substanceMachine LearningMalignant NeoplasmsMass Spectrum AnalysisMetabolicMetabolismMethodologyMethodsModelingMonitorNormal CellNuclear Magnetic ResonanceNutrientOncogenesOxygenPatientsPharmaceutical PreparationsPlayProductionPrognostic MarkerPublic HealthRaman Spectrum AnalysisRegulationReproducibilityResearchResistance developmentResolutionSamplingSurfaceTechniquesTechnologyTimeabstractingaerobic glycolysisbasecancer biomarkerscancer cellcancer diagnosiscancer therapychemical propertyclinically relevantcostdetectordiagnostic assayeffective therapyglucose uptakeimprovedinnovationmalignant breast neoplasmmass spectrometermetabolomemetabolomicsneoplastic cellnew technologynovelnovel diagnosticspatient subsetspersonalized medicineprognosticprotein profilingsuccesstherapeutic targettherapy resistanttooltreatment strategytrendtumortumor metabolismtumor progression
项目摘要
Project Abstract
Cancer cells utilize normal metabolic processes out of context to promote tumor survival. For example,
Otto Warburg and others discovered that tumors have increased glucose uptake, glycolysis, and lactate
production, often with a reduction in citric acid cycle. While “aerobic glycolysis” at first glance is energetically
expensive for tumor cells because it circumvents high ATP production from the citric acid cycle, it allows
cancer cells to survive under low nutrient or low oxygen conditions and to instead use glycolytic intermediates
for the synthesis of essential cellular building blocks without further energy investment. This change in
metabolite regulation suggests a powerful method for monitoring and diagnosing cancer.
This project seeks to develop surface enhanced Raman scattering (SERS) as online detection method for
the characterization of metabolites from breast cancer tumor models. Using the SERS results from tumor
lysates, diagnostic algorithms will be constructed to improve treatment for cancer. Results show that fluid
dynamics can be used to increase the reproducibility and sensitivity of SERS detection in flowing liquids. We
propose to develop methodology to enable the use this innovation to investigate metabolites in cancer cell
lysates using capillary electrophoresis coupled to a SERS flow detector. We will investigate known metabolites
that have been linked to cancer, as well as examine key metabolites associated with oncogenes. The SERS
data collected will be used to formulate diagnostic algorithms that can provide a yes/no indicator of cancer.
The specific aims of this project are as follows:
· AIM 1. Demonstrate the utility of the novel flow detector to assess changes in key metabolites from
tumor cell lysates. The tumor cell lysates will be compared with non-cancerous cell lysates to
identify trends in these metabolites relevant to breast cancer.
· AIM 2. Compare the identification and quantification capabilities with the current gold standard, LC-
MS. This aim will assess how SERS characterization both compares with existing technology but
also increases coverage of the metabolome.
· AIM 3. We will use the metabolites to develop statistical machine learning algorithms to predict the
sample label (cancer or not). The predictor obtained will be used as a diagnostic tool of cancer.
The development of new technologies that provide unique chemical specific information will enable improved
diagnostic assays for the treatment of cancer.
项目摘要
癌细胞利用正常的代谢过程来促进肿瘤存活。比如说,
奥托瓦尔堡和其他人发现,肿瘤增加了葡萄糖的摄取,糖酵解和乳酸
生产,往往减少柠檬酸循环。虽然“有氧糖酵解”乍一看是积极的
对肿瘤细胞来说是昂贵的,因为它避免了柠檬酸循环产生高ATP,
癌细胞在低营养或低氧条件下生存,并使用糖酵解中间体
用于合成基本的细胞构建单元,而无需进一步的能量投资。的这种变化
代谢物调节是监测和诊断癌症的有效方法。
本项目旨在开发表面增强拉曼散射(Sers)作为在线检测方法,
来自乳腺癌肿瘤模型的代谢物的表征。使用肿瘤的Sers结果
裂解物,诊断算法将被构建,以改善癌症的治疗。结果表明,流体
动力学可用于增加流动液体中Sers检测的再现性和灵敏度。我们
我建议开发一种方法,使这种创新能够用于研究癌细胞中的代谢物
使用与Sers流动检测器偶联的毛细管电泳测定裂解物。我们将研究已知的代谢物
与癌症有关的代谢物,以及检查与致癌基因相关的关键代谢物。Sers
收集的数据将用于制定诊断算法,该算法可以提供癌症的是/否指标。
该项目的具体目标如下:
· AIM 1。证明新型流量检测器在评估关键代谢物变化方面的实用性,
肿瘤细胞裂解物。将肿瘤细胞裂解物与非癌细胞裂解物进行比较,
确定这些代谢物与乳腺癌相关的趋势。
· AIM 2。将鉴别和定量能力与当前的金标准LC-
这一目标将评估如何Sers表征既与现有技术相比,
也增加了代谢组的覆盖范围。
· AIM 3。我们将使用代谢物开发统计机器学习算法来预测
样本标签(癌症与否)。所获得的预测因子将被用作癌症的诊断工具。
提供独特的化学品特定信息的新技术的开发将能够改善化学品的质量。
用于治疗癌症的诊断测定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zachary Schultz其他文献
Zachary Schultz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zachary Schultz', 18)}}的其他基金
Glycosylation Analysis by Sheath-Flow SERS
通过鞘流 SERS 进行糖基化分析
- 批准号:
10312126 - 财政年份:2021
- 资助金额:
$ 36.39万 - 项目类别:
Enhanced Raman Imaging of Ligand-Receptor Recognition
配体受体识别的增强拉曼成像
- 批准号:
10687237 - 财政年份:2015
- 资助金额:
$ 36.39万 - 项目类别:
Targeted TERS Investigations of Ligand-Receptor Binding
配体-受体结合的靶向 TERS 研究
- 批准号:
9406141 - 财政年份:2015
- 资助金额:
$ 36.39万 - 项目类别:
Enhanced raman imaging of ligand-receptor recognition
配体-受体识别的增强拉曼成像
- 批准号:
10596420 - 财政年份:2015
- 资助金额:
$ 36.39万 - 项目类别:
Targeted TERS Investigations of Ligand-Receptor Binding
配体-受体结合的靶向 TERS 研究
- 批准号:
9211336 - 财政年份:2015
- 资助金额:
$ 36.39万 - 项目类别:
Enhanced Raman Imaging of Ligand-Receptor Recognition
配体受体识别的增强拉曼成像
- 批准号:
10491043 - 财政年份:2015
- 资助金额:
$ 36.39万 - 项目类别:
Ultrasensitive Label-Free Flow Detector via Surface Enhanced Raman Scattering
通过表面增强拉曼散射的超灵敏无标记流量检测器
- 批准号:
8575713 - 财政年份:2013
- 资助金额:
$ 36.39万 - 项目类别:
Ultrasensitive Label-Free Flow Detector via Surface Enhanced Raman Scattering
通过表面增强拉曼散射的超灵敏无标记流量检测器
- 批准号:
8887351 - 财政年份:2013
- 资助金额:
$ 36.39万 - 项目类别:
Ultrasensitive Label-Free Flow Detector via Surface Enhanced Raman Scattering
通过表面增强拉曼散射的超灵敏无标记流量检测器
- 批准号:
8729504 - 财政年份:2013
- 资助金额:
$ 36.39万 - 项目类别:
相似海外基金
Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
- 批准号:
520728-2017 - 财政年份:2017
- 资助金额:
$ 36.39万 - 项目类别:
University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10368760 - 财政年份:2017
- 资助金额:
$ 36.39万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10669539 - 财政年份:2017
- 资助金额:
$ 36.39万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9570142 - 财政年份:2017
- 资助金额:
$ 36.39万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9915803 - 财政年份:2017
- 资助金额:
$ 36.39万 - 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
- 批准号:
10259999 - 财政年份:2017
- 资助金额:
$ 36.39万 - 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
- 批准号:
21580130 - 财政年份:2009
- 资助金额:
$ 36.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2005
- 资助金额:
$ 36.39万 - 项目类别:
Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2004
- 资助金额:
$ 36.39万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




