Improving Quality by Maintaining Accurate Problem Lists in the EHR (IQ-MAPLE)

通过在 EHR (IQ-MAPLE) 中维护准确的问题列表来提高质量

基本信息

  • 批准号:
    9040788
  • 负责人:
  • 金额:
    $ 45.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-04-15 至 2018-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): A complete patient problem list is the cornerstone of the problem-oriented medical record. It serves as a valuable tool for providers assessing a patient's clinical status and succinctly communicates this information between providers. Accurate problem lists drive clinical decision support tools that improve quality, and an accurate problem list has been associated with higher quality care. Accurate problem lists are also critical for establishing accurate phenotypes for research and supporting quality improvement; however, problem lists in electronic health records are routinely incomplete. In this study, we propose to develop and validate problem inference algorithms to identify problems potentially missing from patient problem lists, and to conduct a randomized trial of these algorithms, studying their effects on quality of care. We call our approach IQ-MAPLE. Our project has three specific aims: 1) develop problem inference algorithms for heart, lung, and blood conditions, 2) implement problem inference alerts and optimize the workflow at four sites and 3) conduct a randomized controlled trial of the problem inference alerts, measuring the acceptance rate of alerts, the direct effect on problem list completeness and, critically, downstream impact of the alerts on key clinical quality measures, including both process and outcomes across a range of heart, lung and blood conditions. If successful, IQ-MAPLE will improve problem list accuracy, which has significant downstream implications: More accurate clinical decision support: Most clinical decision support is disease-oriented and, as such, depends on an accurate problem list. When problems are missing, opportunities to provide support to the clinician are missed, and quality suffers. Better quality measurement: Quality measurement today is often inaccurate, as patients are omitted from measures due to incomplete information on their clinical problems. A more accurate problem list would, in turn, lead to more accurate quality measurement. More accurate research: Clinical, translational and even basic science and genomic research increasingly use EHR data, particularly to identify patients with disease phenotypes, generally using problem lists. When problems are missing, the accuracy of research suffers. Better patient care: Secondary benefits aside, the problem list is, fundamentally, a tool for organizing patient care and communicating among providers. A more accurate, problem list supports these goals. The IQ-MAPLE rules, and our best practices for implementing them, will be freely available, ensuring broad dissemination of these benefits.
描述(由申请人提供):完整的患者问题列表是以问题为导向的病历的基石。它是提供者评估患者临床状态的宝贵工具,并在提供者之间简洁地传达此信息。准确的问题列表驱动临床决策支持工具,提高质量,准确的问题列表与更高质量的护理相关。准确的问题清单也很关键 用于建立准确的研究表型和支持质量改进;然而,电子健康记录中的问题列表通常不完整。在这项研究中,我们建议开发和验证问题推理算法,以确定潜在的问题,从病人的问题列表中缺失,并进行随机试验,这些算法,研究其对护理质量的影响。我们称之为IQ-MAPLE。我们的项目有三个具体目标:1)开发用于心脏、肺和血液状况的问题推断算法,2)在四个站点实施问题推断警报并优化工作流程,以及3)进行问题推断警报的随机对照试验,测量警报的接受率、对问题列表完整性的直接影响,并且,关键地,警报对关键临床质量指标的下游影响,包括一系列心脏、肺和血液疾病的过程和结果。如果成功,IQ-MAPLE将提高问题列表的准确性,这对下游有重要的影响:更准确的临床决策支持:大多数临床决策支持是以疾病为导向的,因此,依赖于准确的问题列表。当问题缺失时,就失去了为临床医生提供支持的机会,质量也会受到影响。更好的质量测量:今天的质量测量通常是不准确的,因为患者由于其临床问题的信息不完整而被忽略。一个更准确的问题清单反过来又会导致更准确的质量测量。更准确的研究:临床、转化甚至基础科学和基因组研究越来越多地使用EHR数据,特别是识别具有疾病表型的患者,通常使用问题列表。当问题缺失时,研究的准确性就会受到影响。更好的患者护理:撇开次要的好处不谈,问题清单从根本上说是一个组织病人护理和提供者之间沟通的工具。一个更准确的问题列表支持这些目标。IQ-MAPLE规则以及我们实施这些规则的最佳实践将免费提供,以确保这些好处的广泛传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ADAM T WRIGHT其他文献

ADAM T WRIGHT的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ADAM T WRIGHT', 18)}}的其他基金

Strategies for Engineering Reliable Value Sets (SERVS)
工程可靠价值集 (SERVS) 的策略
  • 批准号:
    10417435
  • 财政年份:
    2022
  • 资助金额:
    $ 45.82万
  • 项目类别:
Safety Promotion through Early Event Detection in the Elderly (SPEEDe)
通过老年人早期事件检测促进安全 (SPEEDe)
  • 批准号:
    10339398
  • 财政年份:
    2020
  • 资助金额:
    $ 45.82万
  • 项目类别:
Safety Promotion through Early Event Detection in the Elderly (SPEEDe)
通过老年人早期事件检测促进安全 (SPEEDe)
  • 批准号:
    10093288
  • 财政年份:
    2020
  • 资助金额:
    $ 45.82万
  • 项目类别:
Safety Promotion through Early Event Detection in the Elderly (SPEEDe)
通过老年人早期事件检测促进安全 (SPEEDe)
  • 批准号:
    10569125
  • 财政年份:
    2020
  • 资助金额:
    $ 45.82万
  • 项目类别:
Improving clinical decision support reliability using anomaly detection methods
使用异常检测方法提高临床决策支持的可靠性
  • 批准号:
    10027782
  • 财政年份:
    2014
  • 资助金额:
    $ 45.82万
  • 项目类别:
Improving clinical decision support reliability using anomaly detection methods
使用异常检测方法提高临床决策支持的可靠性
  • 批准号:
    8929296
  • 财政年份:
    2014
  • 资助金额:
    $ 45.82万
  • 项目类别:
Improving Quality by Maintaining Accurate Problem Lists in the EHR (IQ-MAPLE)
通过在 EHR (IQ-MAPLE) 中维护准确的问题列表来提高质量
  • 批准号:
    8669579
  • 财政年份:
    2014
  • 资助金额:
    $ 45.82万
  • 项目类别:
Improving clinical decision support reliability using anomaly detection methods
使用异常检测方法提高临床决策支持的可靠性
  • 批准号:
    8745137
  • 财政年份:
    2014
  • 资助金额:
    $ 45.82万
  • 项目类别:
Improving Quality by Maintaining Accurate Problem Lists in the EHR (IQ-MAPLE)
通过在 EHR (IQ-MAPLE) 中维护准确的问题列表来提高质量
  • 批准号:
    8838253
  • 财政年份:
    2014
  • 资助金额:
    $ 45.82万
  • 项目类别:
Improving clinical decision support reliability using anomaly detection methods
使用异常检测方法提高临床决策支持的可靠性
  • 批准号:
    9130886
  • 财政年份:
    2014
  • 资助金额:
    $ 45.82万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 45.82万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 45.82万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 45.82万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 45.82万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 45.82万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 45.82万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 45.82万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 45.82万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 45.82万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.82万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了