Safety Promotion through Early Event Detection in the Elderly (SPEEDe)

通过老年人早期事件检测促进安全 (SPEEDe)

基本信息

  • 批准号:
    10339398
  • 负责人:
  • 金额:
    $ 65.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Adverse events (AEs) – harm to patients that results from medical care – affect as many as 13.5% of hospitalized patients; half of these AEs are preventable and AEs particularly affect the elderly. AEs are notoriously difficult to measure accurately. A variety of paper and electronic trigger tools have been developed to identify AEs; however, their positive predictive value (PPV) is low, requiting subsequent, time-intensive manual chart review to accurately measure AEs. In the proposed project, we will use innovative, state-of-the-art machine interactive learning (IML) techniques to refine existing AE triggers, improving their accuracy substantially. We will also develop a novel AE Explorer to speed review of possible AEs, as well as an innovative package of predictive analytics tools and methods to measure and detect them. Our approach combines and compares expert-driven improvement with the most recent IML techniques to make triggers more accurate, with the ultimate goal of creating triggers that are accurate enough to stand in as proxies for actual measurement of harm. We call our approach Safety Promotion through Early Event Detection in the Elderly, or SPEEDe. Our team of accomplished machine learning, patient safety, risk management, AE detection, geriatric medicine and trigger tool experts will work together to carry out the specific aims of this project: (1) prototype and rapidly iterate a trigger review dashboard (the Adverse Event Explorer) using a user-centered design process, (2) develop and evaluate novel Interactive Machine Learning approaches for more efficient and accurate adverse event chart review and trigger refinement, and (3) Integrate Interactive Machine Learning into the Adverse Event Explorer and evaluate it prospectively in a clinical setting.
摘要 不良事件(AE)-医疗护理对患者造成的伤害-影响多达 13.5%的住院患者;这些AE中有一半是可以预防的,AE特别影响患者的健康。 老人众所周知,AE很难准确测量。各种纸张和电子 已经开发了触发工具来识别AE;但是,其阳性预测值(PPV) 低,需要后续的时间密集型手动病历审查,以准确测量AE。 在拟议的项目中,我们将使用创新的、最先进的机器交互学习 (IML)改进现有AE触发器的技术,大大提高其准确性。我们将 我还开发了一个新的AE浏览器,以加快审查可能的AE,以及创新的 一套预测分析工具和方法来测量和检测它们。我们的方法 结合并比较专家驱动的改进与最新的IML技术, 使触发器更准确,最终目标是创建准确的触发器 足以作为实际衡量危害的替代品。我们称之为安全 通过老年人早期事件检测促进,或SPEEDe。 我们的团队在机器学习、患者安全、风险管理、不良事件检测、 老年医学和触发工具专家将共同努力,以实现这一具体目标, 项目:(1)原型化并快速部署触发审查仪表板(不良事件 资源管理器)使用以用户为中心的设计过程,(2)开发和评估新的互动 采用机器学习方法进行更高效、更准确的不良事件图表审查, 触发器细化,以及(3)将交互式机器学习集成到不良事件中 探索并在临床环境中进行前瞻性评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ADAM T WRIGHT其他文献

ADAM T WRIGHT的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ADAM T WRIGHT', 18)}}的其他基金

Strategies for Engineering Reliable Value Sets (SERVS)
工程可靠价值集 (SERVS) 的策略
  • 批准号:
    10417435
  • 财政年份:
    2022
  • 资助金额:
    $ 65.32万
  • 项目类别:
Safety Promotion through Early Event Detection in the Elderly (SPEEDe)
通过老年人早期事件检测促进安全 (SPEEDe)
  • 批准号:
    10093288
  • 财政年份:
    2020
  • 资助金额:
    $ 65.32万
  • 项目类别:
Safety Promotion through Early Event Detection in the Elderly (SPEEDe)
通过老年人早期事件检测促进安全 (SPEEDe)
  • 批准号:
    10569125
  • 财政年份:
    2020
  • 资助金额:
    $ 65.32万
  • 项目类别:
Improving clinical decision support reliability using anomaly detection methods
使用异常检测方法提高临床决策支持的可靠性
  • 批准号:
    10027782
  • 财政年份:
    2014
  • 资助金额:
    $ 65.32万
  • 项目类别:
Improving clinical decision support reliability using anomaly detection methods
使用异常检测方法提高临床决策支持的可靠性
  • 批准号:
    8929296
  • 财政年份:
    2014
  • 资助金额:
    $ 65.32万
  • 项目类别:
Improving Quality by Maintaining Accurate Problem Lists in the EHR (IQ-MAPLE)
通过在 EHR (IQ-MAPLE) 中维护准确的问题列表来提高质量
  • 批准号:
    8669579
  • 财政年份:
    2014
  • 资助金额:
    $ 65.32万
  • 项目类别:
Improving clinical decision support reliability using anomaly detection methods
使用异常检测方法提高临床决策支持的可靠性
  • 批准号:
    8745137
  • 财政年份:
    2014
  • 资助金额:
    $ 65.32万
  • 项目类别:
Improving Quality by Maintaining Accurate Problem Lists in the EHR (IQ-MAPLE)
通过在 EHR (IQ-MAPLE) 中维护准确的问题列表来提高质量
  • 批准号:
    8838253
  • 财政年份:
    2014
  • 资助金额:
    $ 65.32万
  • 项目类别:
Improving clinical decision support reliability using anomaly detection methods
使用异常检测方法提高临床决策支持的可靠性
  • 批准号:
    9130886
  • 财政年份:
    2014
  • 资助金额:
    $ 65.32万
  • 项目类别:
Improving Quality by Maintaining Accurate Problem Lists in the EHR (IQ-MAPLE)
通过在 EHR (IQ-MAPLE) 中维护准确的问题列表来提高质量
  • 批准号:
    9040788
  • 财政年份:
    2014
  • 资助金额:
    $ 65.32万
  • 项目类别:

相似海外基金

How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
  • 批准号:
    2315783
  • 财政年份:
    2023
  • 资助金额:
    $ 65.32万
  • 项目类别:
    Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
  • 批准号:
    2719534
  • 财政年份:
    2022
  • 资助金额:
    $ 65.32万
  • 项目类别:
    Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
  • 批准号:
    20K01113
  • 财政年份:
    2020
  • 资助金额:
    $ 65.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633211
  • 财政年份:
    2020
  • 资助金额:
    $ 65.32万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2436895
  • 财政年份:
    2020
  • 资助金额:
    $ 65.32万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633207
  • 财政年份:
    2020
  • 资助金额:
    $ 65.32万
  • 项目类别:
    Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
  • 批准号:
    19K01745
  • 财政年份:
    2019
  • 资助金额:
    $ 65.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
  • 批准号:
    426559561
  • 财政年份:
    2019
  • 资助金额:
    $ 65.32万
  • 项目类别:
    Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
  • 批准号:
    2236701
  • 财政年份:
    2019
  • 资助金额:
    $ 65.32万
  • 项目类别:
    Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
  • 批准号:
    415543446
  • 财政年份:
    2019
  • 资助金额:
    $ 65.32万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了