Strategies for Engineering Reliable Value Sets (SERVS)

工程可靠价值集 (SERVS) 的策略

基本信息

  • 批准号:
    10417435
  • 负责人:
  • 金额:
    $ 38.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Significant evidence suggests that CDS, when used effectively, can improve health care quality, safety, and effectiveness. However, despite its potential, CDS can cause significant adverse events due to mal- functions. In our previous work, we identified that a significant source of CDS malfunctions is related to problems with maintaining accurate and consistent value sets. Value sets are “lists of codes and corre- sponding terms, from NLM-hosted standard clinical vocabularies (such as SNOMED CT®, RxNorm, LOINC® and others), that define clinical concepts.” They are commonly used in both clinical decision support and clinical quality measures (CQMs) to define complex concepts. Creating and maintaining value sets is inherently challenging, and value set errors can lead to errors in both CDS and quality measurement. We have found that these errors are widespread and have a variety of causes. In the MALDIVES (Machine Learning-Driven Interactive Value Set Enhancement System) project, we propose the first comprehensive study of value set creation and maintenance, the development of novel and inno- vative machine learning and ontology-based approaches for improving value sets, and the creation of new, open-source tools to help value set authors and users. MALDIVES relies on a mix of qualitative methods, development of novel ontology and machine learning-based methods for improvement of value sets, and new open-source tools, and we anticipate that it will yield new theory, innovations in clinical ap- plications of machine learning, and practical tools and processes for value set authors and users. These advances will improve clinical decision support and quality measurement, reduce alert fatigue and con- tribute to improvements in patient safety and healthcare quality.
项目总结/摘要 大量证据表明,CDS,如果有效使用,可以提高医疗保健质量,安全性, 和有效性。然而,尽管其潜力,CDS可能会导致严重的不良事件,由于错误- 功能协调发展的在我们以前的工作中,我们发现CDS故障的一个重要来源与以下因素有关: 保持准确和一致的价值集的问题。值集是“代码和对应的列表”, 来自NLM托管的标准临床词汇表(如SNOMED CT®,RxNorm, LOINC®和其他),定义临床概念。它们通常用于临床决策 支持和临床质量措施(CQM)来定义复杂的概念。创建和维护 值集本身就具有挑战性,值集错误可能导致CDS和质量错误 测量.我们发现,这些错误是普遍存在的,有各种各样的原因。在 MALDIVES(机器学习驱动的交互式值集增强系统)项目,我们提出 第一次全面研究价值集的创造和维护,小说和创新的发展, 用于改进价值集的可变机器学习和基于本体的方法,以及 新的、开源的工具来帮助作者和用户设定价值。马尔代夫依赖于一个混合的质量 方法,开发新的本体和基于机器学习的方法,以提高价值 集,和新的开源工具,我们预计,它将产生新的理论,创新的临床应用, 机器学习的应用,以及价值集作者和用户的实用工具和流程。这些 这些进展将改善临床决策支持和质量测量,减少警报疲劳和欺诈, 对患者安全和医疗质量的改善表示敬意。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ADAM T WRIGHT其他文献

ADAM T WRIGHT的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ADAM T WRIGHT', 18)}}的其他基金

Safety Promotion through Early Event Detection in the Elderly (SPEEDe)
通过老年人早期事件检测促进安全 (SPEEDe)
  • 批准号:
    10339398
  • 财政年份:
    2020
  • 资助金额:
    $ 38.67万
  • 项目类别:
Safety Promotion through Early Event Detection in the Elderly (SPEEDe)
通过老年人早期事件检测促进安全 (SPEEDe)
  • 批准号:
    10093288
  • 财政年份:
    2020
  • 资助金额:
    $ 38.67万
  • 项目类别:
Safety Promotion through Early Event Detection in the Elderly (SPEEDe)
通过老年人早期事件检测促进安全 (SPEEDe)
  • 批准号:
    10569125
  • 财政年份:
    2020
  • 资助金额:
    $ 38.67万
  • 项目类别:
Improving clinical decision support reliability using anomaly detection methods
使用异常检测方法提高临床决策支持的可靠性
  • 批准号:
    10027782
  • 财政年份:
    2014
  • 资助金额:
    $ 38.67万
  • 项目类别:
Improving clinical decision support reliability using anomaly detection methods
使用异常检测方法提高临床决策支持的可靠性
  • 批准号:
    8929296
  • 财政年份:
    2014
  • 资助金额:
    $ 38.67万
  • 项目类别:
Improving Quality by Maintaining Accurate Problem Lists in the EHR (IQ-MAPLE)
通过在 EHR (IQ-MAPLE) 中维护准确的问题列表来提高质量
  • 批准号:
    8669579
  • 财政年份:
    2014
  • 资助金额:
    $ 38.67万
  • 项目类别:
Improving clinical decision support reliability using anomaly detection methods
使用异常检测方法提高临床决策支持的可靠性
  • 批准号:
    8745137
  • 财政年份:
    2014
  • 资助金额:
    $ 38.67万
  • 项目类别:
Improving Quality by Maintaining Accurate Problem Lists in the EHR (IQ-MAPLE)
通过在 EHR (IQ-MAPLE) 中维护准确的问题列表来提高质量
  • 批准号:
    8838253
  • 财政年份:
    2014
  • 资助金额:
    $ 38.67万
  • 项目类别:
Improving clinical decision support reliability using anomaly detection methods
使用异常检测方法提高临床决策支持的可靠性
  • 批准号:
    9130886
  • 财政年份:
    2014
  • 资助金额:
    $ 38.67万
  • 项目类别:
Improving Quality by Maintaining Accurate Problem Lists in the EHR (IQ-MAPLE)
通过在 EHR (IQ-MAPLE) 中维护准确的问题列表来提高质量
  • 批准号:
    9040788
  • 财政年份:
    2014
  • 资助金额:
    $ 38.67万
  • 项目类别:

相似海外基金

Non-invasive coronary thrombus imaging to define the cause of acute myocardial infarction
无创冠状动脉血栓显像可明确急性心肌梗塞的病因
  • 批准号:
    MR/Y009770/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Fellowship
Impact of COVID-19 pandemic on pathophysiology of acute myocardial infarction and emergency cardiovascular care system
COVID-19大流行对急性心肌梗死病理生理学和心血管急诊系统的影响
  • 批准号:
    23K15160
  • 财政年份:
    2023
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Extreme Heat and Acute Myocardial Infarction: Effect Modifications by Sex, Medical History, and Air Pollution
酷热和急性心肌梗塞:性别、病史和空气污染的影响
  • 批准号:
    10709134
  • 财政年份:
    2023
  • 资助金额:
    $ 38.67万
  • 项目类别:
Development of a multi-RNA signature in blood towards a rapid diagnostic test to robustly distinguish patients with acute myocardial infarction
开发血液中的多 RNA 特征以进行快速诊断测试,以强有力地区分急性心肌梗死患者
  • 批准号:
    10603548
  • 财政年份:
    2023
  • 资助金额:
    $ 38.67万
  • 项目类别:
Effectiveness of Strategies to Improve Outcomes after Hospitalization for Acute Myocardial Infarction in Older Adults
改善老年人急性心肌梗死住院后预后的策略的有效性
  • 批准号:
    10576349
  • 财政年份:
    2022
  • 资助金额:
    $ 38.67万
  • 项目类别:
Establishment of the emergency transport decision making program for patients with acute myocardial infarction using artificial intelligence (AI)
利用人工智能(AI)建立急性心肌梗死患者紧急转运决策方案
  • 批准号:
    22K09185
  • 财政年份:
    2022
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of effect of intracoronary supersaturated oxygen therapy on inhibition of no reflow phenomenon in acute myocardial infarction
冠状动脉内过饱和氧治疗抑制急性心肌梗死无复流现象的效果评价
  • 批准号:
    22K08135
  • 财政年份:
    2022
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing Federated Learning Strategies for Disease Surveillance Using Cross-Jurisdiction Electronic Medical Records without Data Sharing: With Applications to Acute Myocardial Infarction, Hypertension, and Sepsis Detection
使用跨辖区电子病历(无需数据共享)开发疾病监测联合学习策略:在急性心肌梗塞、高血压和脓毒症检测中的应用
  • 批准号:
    468573
  • 财政年份:
    2022
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Operating Grants
Effectiveness of Strategies to Improve Outcomes after Hospitalization for Acute Myocardial Infarction in Older Adults
改善老年人急性心肌梗死住院后预后的策略的有效性
  • 批准号:
    10339915
  • 财政年份:
    2022
  • 资助金额:
    $ 38.67万
  • 项目类别:
The Personalising Acute Myocardial Infarction Care to improve Outcomes (PAMICO Project)
个性化急性心肌梗死护理以改善结果(PAMICO 项目)
  • 批准号:
    nhmrc : 2005797
  • 财政年份:
    2021
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Partnership Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了