SparseCT: Order-of-Magnitude Dose Reduction with Interrupted-Beam Acquisition
SparseCT:通过断射束采集实现数量级剂量减少
基本信息
- 批准号:9145203
- 负责人:
- 金额:$ 70.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-16 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAlgorithmsAngiographyAreaAttentionChestChronicClinicalCollaborationsCollimatorCrohn&aposs diseaseDataDiagnostic ImagingDoseEvaluationExposure toGoalsGoldHeadHealthImageInterruptionLungMagnetic Resonance ImagingMedicalMethodsModelingMorphologic artifactsNIH Program AnnouncementsNational Institute of Biomedical Imaging and BioengineeringNoisePatientsPatternPelvisPerformancePhotonsPhysical environmentPhysicsPhysiologic pulsePlantsPopulationProcessRadiationRecurrenceResearchRiskRoentgen RaysSamplingScanningSourceSpottingsStarvationSystemTechnologyTestingTimeTomography, Computed, ScannersTubeVariantWorkX-Ray Computed Tomographybasedata acquisitiondesigndetectorhuman subjectimage reconstructionimprovedindustry partnernew technologynovelnovel strategiesprototypereconstructionsimulation
项目摘要
DESCRIPTION (provided by applicant): Rapidly increasing utilization of X-ray computed tomography (CT) has heightened concerns about the collective radiation exposure to the population as a whole, and about potential risks to patients undergoing recurrent imaging for chronic conditions or persistent complaints. These concerns have motivated a great deal of attention to practical radiation-dose-reduction strategies. Current dose reduction approaches, such as iterative reconstruction or improved detector technology, each offer only moderate dose reductions up to 30- 40% below the prior state of the art. We will pursue more-than-incremental improvements in radiation dose by changing the current paradigm of CT data acquisition and image reconstruction: a reduced number of X-ray projections will be acquired, in an angularly subselected pattern associated with random-appearing or "incoherent" artifacts which will then be removed by compressed-sensing (CS) reconstruction algorithms. Several groups have shown the potential of CS to reconstruct undersampled CT data in simulations, but no practical means of incoherent undersampling has yet been demonstrated in the challenging physical environment of a rapidly rotating CT gantry. In this project, we will develop and evaluate novel approaches for rapid and incoherent interruption of the X-ray source on the CT gantry which, when combined with our sparsity-based CS reconstruction algorithms, will enable reconstruction of high-quality images from a markedly reduced number of projections. In particular, we will investigate a novel moving multihole collimator design which will block X-rays directed towards different subsets of detectors at different gantry angles. We have already shown these approaches to be capable of order-of-magnitude dose reductions in preliminary simulations in both phantoms and human subjects, but in order to evaluate our methods in actual practice, we will work closely with Siemens Medical Solutions, who will dedicate an experimental test bay at their CT plant in Forchheim to develop a practical test system as a prelude to functional clinical scanner prototypes. Successful completion of the aims of this study will lay the groundwork for a paradigm-changing approach to CT data acquisition and reconstruction, enabling heretofore inaccessible dose reductions. Specific Aims are as follows: 1. Validate the dose-reduction potential of incoherent interrupted-beam acquisition and sparse reconstruction using realistic simulations carefully designed to incorporate the physics of the modified acquisition process. 2. Evaluate achievable dose reduction with preserved image quality using retrospective undersampling of clinical scan data (using the model from Aim 1), and compare with gold-standard dose reduction methods. 3. Develop a test system for interrupted-beam CT acquisition in collaboration with our industry partner, and evaluate performance in phantoms.
描述(由申请人提供):X射线计算机断层扫描(CT)的使用迅速增加,这加剧了对整个人群集体辐射暴露的担忧,以及对因慢性疾病或持续性投诉接受复发性成像的患者的潜在风险。这些关切促使人们高度重视减少辐射剂量的实际战略。目前的剂量减少方法,如迭代重建或改进的探测器技术,每种方法都只能提供比现有技术水平低30- 40%的中等剂量减少。我们将通过改变当前的CT数据采集和图像重建模式来追求辐射剂量的增量改进:将以与随机出现或“不相干”伪影相关的角度子选择图案采集减少数量的X射线投影,然后将通过压缩感测(CS)重建算法去除所述伪影。几个小组已经显示了CS在模拟中重建欠采样CT数据的潜力,但是在快速旋转CT机架的具有挑战性的物理环境中还没有证明不相干欠采样的实用方法。 在这个项目中,我们将开发和评估新的方法,快速和不相干中断的X射线源的CT机架,当结合我们的稀疏性为基础的CS重建算法,将使高质量的图像重建从一个显着减少的投影数量。特别是,我们将研究一种新的移动多孔准直器的设计,这将阻止X射线在不同的机架角度指向不同的探测器子集。 我们已经证明了这些方法能够在幻影和人类受试者的初步模拟中减少数量级的剂量,但为了在实际实践中评估我们的方法,我们将与西门子医疗解决方案密切合作,他们将在Forchheim的CT工厂专门建立一个实验测试台,以开发一个实用的测试系统,作为功能性临床扫描仪原型的前奏。成功完成这项研究的目的将奠定基础的一个范式改变的方法,CT数据采集和重建,使迄今无法达到的剂量减少。具体目标如下:1.使用经过精心设计的真实模拟来验证非相干中断束采集和稀疏重建的剂量降低潜力,以纳入修改后的采集过程的物理特性。2.使用临床扫描数据的回顾性欠采样(使用目标1中的模型)评价在保留图像质量的情况下可实现的剂量降低,并与金标准剂量降低方法进行比较。3.与我们的行业合作伙伴合作开发用于中断束CT采集的测试系统,并在体模中评估性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo Otazo其他文献
Ricardo Otazo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ricardo Otazo', 18)}}的其他基金
Real-time MRI-guided adaptive radiotherapy of unresectable pancreatic cancer
不可切除胰腺癌的实时 MRI 引导适应性放疗
- 批准号:
10469615 - 财政年份:2021
- 资助金额:
$ 70.82万 - 项目类别:
Real-time MRI-guided adaptive radiotherapy of unresectable pancreatic cancer
不可切除胰腺癌的实时 MRI 引导适应性放疗
- 批准号:
10299267 - 财政年份:2021
- 资助金额:
$ 70.82万 - 项目类别:
Real-time MRI-guided adaptive radiotherapy of unresectable pancreatic cancer
不可切除胰腺癌的实时 MRI 引导适应性放疗
- 批准号:
10672263 - 财政年份:2021
- 资助金额:
$ 70.82万 - 项目类别:
Rapid motion-robust quantitative DCE-MRI for the assessment of gynecologic cancers
用于评估妇科癌症的快速运动稳健定量 DCE-MRI
- 批准号:
10052888 - 财政年份:2020
- 资助金额:
$ 70.82万 - 项目类别:
Rapid motion-robust quantitative DCE-MRI for the assessment of gynecologic cancers
用于评估妇科癌症的快速运动稳健定量 DCE-MRI
- 批准号:
10267713 - 财政年份:2020
- 资助金额:
$ 70.82万 - 项目类别:
Rapid motion-robust quantitative DCE-MRI for the assessment of gynecologic cancers
用于评估妇科癌症的快速运动稳健定量 DCE-MRI
- 批准号:
10432102 - 财政年份:2020
- 资助金额:
$ 70.82万 - 项目类别:
CAI2R Technology Research and Development Project #1: Towards Rapid Continuous Comprehensive MR Imaging: New Methods, New Paradigms, and New Applications
CAI2R技术研发项目
- 批准号:
8794073 - 财政年份:
- 资助金额:
$ 70.82万 - 项目类别:
CAI2R Technology Research and Development Project #1: Towards Rapid Continuous Comprehensive MR Imaging: New Methods, New Paradigms, and New Applications
CAI2R技术研发项目
- 批准号:
9110725 - 财政年份:
- 资助金额:
$ 70.82万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Continuing Grant