Real-time MRI-guided adaptive radiotherapy of unresectable pancreatic cancer

不可切除胰腺癌的实时 MRI 引导适应性放疗

基本信息

  • 批准号:
    10469615
  • 负责人:
  • 金额:
    $ 65.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-13 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Pancreatic cancer has the highest mortality rate of all cancers, with a 5-year survival rate of only 9%. Surgery still represents the only curative treatment option, though less than 20% of patients are candidates for resection. Approximately 30-40% of patients present with locally advanced unresectable tumors with no significant chance of long-term survival through standard treatments. The use of ablative radiation doses (biologically equivalent doses of 100Gy) produces results that are comparable to surgical resection in patients with inferior prognostic features. However, organ motion, due to respiratory motion, must be managed to minimize toxicity in the gastrointestinal tract. In this project, we will develop novel real-time volumetric MRI technology that can guide radiotherapy to enable the use of ablative doses with minimal risk. Our technique, called MR SIGnature Matching (MRSIGMA), pre-learns 3D motion states and assigns unique motion signatures during an offline learning phase and performs fast signature acquisition and matching during an online matching phase. We have demonstrated real-time tracking of liver tumors with an imaging latency (acquisition plus reconstruction) of about 250 ms using MRSIGMA. We will collaborate with Elekta to implement MRSIGMA on the Unity MR-Linac system and to link the output of MRSIGMA with the multileaf collimator (MLC) system to enable the radiation beam to track the 3D position and shape of the moving tumor in real-time. Specific Aims are as follows: 1. Develop deep learning reconstruction of undersampled dynamic MRI data for rapid motion database generation during offline learning and adaptation during online matching a. Develop a convolutional neural network for rapid reconstruction of motion-resolved data (< 10 seconds) b. Detect anatomical changes, such as motion baseline drifts, and adapt the motion database accordingly c. Perform initial validation on a dynamic MRI phantom and ten volunteers 2. Validate the potential of MRSIGMA for real-time volumetric tumor motion imaging on fifty patients with locally advanced unresectable pancreatic cancer a. Accuracy hypothesis: real-time MRSIGMA is noninferior to a non-real-time XDGRASP reference b. Reproducibility hypothesis: two MRSIGMA scans present equivalent real-time imaging performance 3. Develop and validate on dynamic phantoms the proposed MRSIGMA-guided MLC tracking in collaboration with Elekta a. Develop software to control the MLC with the output of MRSIGMA b. Evaluate tracking latency, geometric error, reproducibility and dosimetric accuracy
项目摘要 胰腺癌是所有癌症中死亡率最高的,5年生存率仅为9%。手术 尽管只有不到20%的患者适合切除,但它仍然是唯一的治愈性治疗选择。 大约30-40%的患者存在局部晚期不可切除的肿瘤, 通过标准治疗的长期存活率。消融辐射剂量的使用(生物等效 剂量100 Gy)产生的结果与预后较差的患者的手术切除相当。 功能.然而,由于呼吸运动,器官运动必须被管理以最小化呼吸系统中的毒性。 胃肠道在这个项目中,我们将开发新的实时体积MRI技术,可以引导 放射治疗,使使用消融剂量的风险最小。我们的技术,称为MR信号匹配 (MRSIGMA),预先学习3D运动状态,并在离线学习阶段分配唯一的运动签名 并在在线匹配阶段执行快速签名获取和匹配。我们已经证明 实时跟踪肝脏肿瘤,成像延迟(采集加重建)约为250 ms, 马先生。我们将与Elekta合作,在Unity MR-Linac系统上实施MRSIGMA, MRSIGMA的输出与多叶准直器(MLC)系统,使辐射束跟踪3D 移动肿瘤的位置和形状。具体目标如下: 1.为快速运动数据库开发欠采样动态MRI数据的深度学习重建 在离线学习期间生成和在线匹配期间适配 a.开发卷积神经网络以快速重建运动解析数据(< 10秒) B.检测解剖学变化,例如运动基线漂移,并相应地调整运动数据库 C.对动态MRI体模和10名志愿者进行初始确认 2.评价MRSIGMA在50例局部肿瘤患者的实时体积运动成像中的潜力 晚期不可切除的胰腺癌 a.准确度假设:实时MRSIGMA不劣于非实时XDGRASP参考 B.再现性假设:两种MRSIGMA扫描的实时成像性能等同 3.在动态体模上开发并验证合作提出的MRSIGMA引导MLC跟踪 关于Elekta a.利用MRSIGMA的输出信息开发MLC控制软件 B.评价跟踪延迟、几何误差、再现性和剂量测定准确度

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ricardo Otazo其他文献

Ricardo Otazo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ricardo Otazo', 18)}}的其他基金

Real-time MRI-guided adaptive radiotherapy of unresectable pancreatic cancer
不可切除胰腺癌的实时 MRI 引导适应性放疗
  • 批准号:
    10299267
  • 财政年份:
    2021
  • 资助金额:
    $ 65.21万
  • 项目类别:
Real-time MRI-guided adaptive radiotherapy of unresectable pancreatic cancer
不可切除胰腺癌的实时 MRI 引导适应性放疗
  • 批准号:
    10672263
  • 财政年份:
    2021
  • 资助金额:
    $ 65.21万
  • 项目类别:
Rapid motion-robust quantitative DCE-MRI for the assessment of gynecologic cancers
用于评估妇科癌症的快速运动稳健定量 DCE-MRI
  • 批准号:
    10052888
  • 财政年份:
    2020
  • 资助金额:
    $ 65.21万
  • 项目类别:
Rapid motion-robust quantitative DCE-MRI for the assessment of gynecologic cancers
用于评估妇科癌症的快速运动稳健定量 DCE-MRI
  • 批准号:
    10267713
  • 财政年份:
    2020
  • 资助金额:
    $ 65.21万
  • 项目类别:
Rapid motion-robust quantitative DCE-MRI for the assessment of gynecologic cancers
用于评估妇科癌症的快速运动稳健定量 DCE-MRI
  • 批准号:
    10432102
  • 财政年份:
    2020
  • 资助金额:
    $ 65.21万
  • 项目类别:
SparseCT: Order-of-Magnitude Dose Reduction with Interrupted-Beam Acquisition
SparseCT:通过断射束采集实现数量级剂量减少
  • 批准号:
    9145203
  • 财政年份:
    2015
  • 资助金额:
    $ 65.21万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.21万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 65.21万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 65.21万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.21万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.21万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 65.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 65.21万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 65.21万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 65.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 65.21万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了