Regulatory Roles of Zinc Fluxes in Metalloprotein Occupancy and Cell Cycle Progression
锌通量在金属蛋白占据和细胞周期进展中的调节作用
基本信息
- 批准号:9095387
- 负责人:
- 金额:$ 29.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:Acrosome ReactionAddressAnimalsAttentionBindingBinding SitesBiochemicalBiochemistryBiological AssayBiological ModelsBiologyBolus InfusionCatalysisCell CycleCell Cycle ArrestCell Cycle ProgressionCell Cycle RegulationCell modelCell physiologyCellsCharacteristicsChemicalsCommunitiesCytosolDataDecision MakingDependenceElementsEmbryoEmbryonic DevelopmentEnzymesEventFemaleFertilizationFertilization in VitroFluorescent ProbesGerm CellsGoalsGrowthHealthHourHumanImmuneImmune responseIn VitroIntakeIonsIslet CellIslets of LangerhansIsotopesKnowledgeLaboratoriesMammalian CellMapsMediatingMediator of activation proteinMeiosisMetabolic DiseasesMetalloproteinsMetalsMethodologyMethodsMitotic Cell CycleModelingMolecularMotionMovementMusNeuronsOocytesPathway interactionsPhysiologicalPhysiologyPlayPolymeraseProcessProtein ChemistryProteinsProteomeRadioactiveReagentReporterRibosomesRoleSeriesSignal PathwaySignal TransductionSignal Transduction PathwaySperm CapacitationSperm MaturationStagingSystemTestingTimeTracerTransition ElementsValidationWorkZincZinc FingersZona Pellucidabasecofactoregggenetic regulatory proteinimaging probeinnovationinsightinsulin secretionlive cell imagingmalemetalloregulatory proteinnanoparticlenervous system disorderoocyte maturationprotein structurereceptorresearch studyspatiotemporalsperm cellsuccesstraffickingtranscription factoruptakezygote
项目摘要
DESCRIPTION (provided by applicant): Zinc fluxes have recently been discovered to be key regulatory events in a variety of human physiologies. For instance, significant zinc mobilization events play essential roles cortical neuron function, proper immune response, and insulin secretion. Zinc has traditionally been viewed as a static cofactor involved in protein structure and enzyme catalysis. More recently, however, a number of studies have provided support for the idea that zinc binding sites in regulatory proteins respond to transient fluctuations in zinc availability and are switched on and off in way that regulates key cellular events. Despite its rol in these profound physiologies the biochemistry of zinc action is not well understood. Little is known regarding the instructive mechanisms of zinc fluxes, zinc trafficking pathways and the role of specific metalloprotein receptors in signaling events. To interpret and eventually intervene in neurological disorders and metabolic diseases caused by disruption of such pathways, we plan to elucidate the basic scientific mechanisms of zinc-dependent switching events at the level of molecules and cells. We will test the hypothesis that regulatory zinc fluxes
exert instructive control of the mammalian cell cycle through specific, receptor-mediated processes. This hypothesis is based on multiple lines of evidence, including: (1) data showing fluctuations zinc distribution at various points in the cell cycle for single cells; (2) live cell imaging demonstrating the movement of waves of zinc; and (3) physiochemical approaches showing colocalization of zinc with specific factors. We will use mammalian gametes, i.e. the sperm and egg, as a model cellular system to understand how an essential zinc signaling pathway works. One objective is to identify molecular mediators and targets of regulatory zinc fluxes by examining the quantitative changes in the localization of zinc in single cells at specifi points in the cell cycle. We will then correlate these spatio- temporal characteristics of metal availability with changes in protein chemistry of zinc receptors that are targets of the signaling events. Refinement and validation of the new chemical probes and physical methods developed in these studies will substantially enhance our knowledge of a fundamental pathway that regulates cellular decision making processes. At the project's conclusion, we will have accomplished three innovative goals of significance to the biomedical community. First, we will provide fundamental new insights into inorganic signaling events work at a molecular level. Second, we will develop methods to probe the metalloproteome and identify how key proteins involved in embryogenesis change zinc occupancy immediately following fertilization. Third, we will provide fundamental new insights into inorganic signaling events in sperm capacitation and acrosome reactions. Taken together these results will elucidate a robust role for proteins involved in zinc signaling fluxes and the mechanisms of cell cycle regulation.
描述(由申请人提供):最近发现锌通量是各种人体生理学中的关键调节事件。例如,显著的锌动员事件在皮质神经元功能、适当的免疫应答和胰岛素分泌中起重要作用。传统上,锌被认为是一种参与蛋白质结构和酶催化的静态辅因子。然而,最近的一些研究已经为以下观点提供了支持:调节蛋白中的锌结合位点响应于锌可用性的瞬时波动,并且以调节关键细胞事件的方式打开和关闭。尽管锌在这些意义深远的生理学中发挥作用,但锌的生物化学作用还没有得到很好的理解。关于锌通量、锌转运途径和特定金属蛋白受体在信号事件中的作用的指导性机制知之甚少。为了解释并最终干预由这些途径中断引起的神经系统疾病和代谢疾病,我们计划在分子和细胞水平上阐明锌依赖性开关事件的基本科学机制。我们将检验调节性锌通量
通过特定的受体介导的过程对哺乳动物细胞周期进行指导性控制。这一假设基于多条证据,包括:(1)显示单个细胞在细胞周期中不同点的锌分布波动的数据;(2)显示锌波运动的活细胞成像;以及(3)显示锌与特定因子共定位的理化方法。我们将使用哺乳动物配子,即精子和卵子,作为模型细胞系统,以了解基本锌信号通路如何工作。一个目的是通过检测单个细胞中锌在细胞周期特定点的定位的定量变化来确定调节锌通量的分子介质和靶点。然后,我们将这些时空特征的金属的可用性与蛋白质化学的变化,锌受体的信号事件的目标。在这些研究中开发的新化学探针和物理方法的改进和验证将大大提高我们对调节细胞决策过程的基本途径的认识。在项目结束时,我们将完成对生物医学界具有重要意义的三个创新目标。首先,我们将在分子水平上提供无机信号事件工作的基本新见解。其次,我们将开发方法来探测金属蛋白质组,并确定胚胎发生中的关键蛋白质如何改变受精后立即锌占用。第三,我们将为精子获能和顶体反应中的无机信号事件提供基本的新见解。总之,这些结果将阐明一个强大的作用,蛋白质参与锌信号流和细胞周期调控的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THOMAS V O'HALLORAN其他文献
THOMAS V O'HALLORAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THOMAS V O'HALLORAN', 18)}}的其他基金
TR&D Project 1: Higher Throughput Multi-element Distribution & Quantitation at the Tissue Level
TR
- 批准号:
10197969 - 财政年份:2020
- 资助金额:
$ 29.3万 - 项目类别:
TR&D Project 1: Higher Throughput Multi-element Distribution & Quantitation at the Tissue Level
TR
- 批准号:
10652605 - 财政年份:2020
- 资助金额:
$ 29.3万 - 项目类别:
TR&D Project 1: Higher Throughput Multi-element Distribution & Quantitation at the Tissue Level
TR
- 批准号:
10494056 - 财政年份:2020
- 资助金额:
$ 29.3万 - 项目类别:
Regulatory Roles of Zinc Fluxes in Metalloprotein Occupancy and Cell Cycle Progression
锌通量在金属蛋白占据和细胞周期进展中的调节作用
- 批准号:
10541893 - 财政年份:2015
- 资助金额:
$ 29.3万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Research Grant














{{item.name}}会员




