Calcium Channels, Calmodulin and Nuclear CREB Signaling
钙通道、钙调蛋白和核 CREB 信号传导
基本信息
- 批准号:8864898
- 负责人:
- 金额:$ 40.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAutistic DisorderBindingBiochemicalBiological Neural NetworksBrainCalcium ChannelCalmodulinCell NucleusCellsCellular biologyChelating AgentsChemicalsChimeric ProteinsCommunicationComplexCouplesCouplingCyclic AMP Response ElementCyclic AMP-Responsive DNA-Binding ProteinCytoplasmDNA Sequence AlterationDevelopmentDiffusionDisabled PersonsDiseaseDrug AddictionEgtazic AcidEnzymesEventFamilyFrequenciesFundingGene ExpressionGeneticGenetic TranscriptionGoalsHealthImageLabelLearningLigandsLinkMembraneMemoryMinorityModificationMolecularMovementNail plateNeuronsNuclearNuclear Localization SignalOral cavityPanthera leoPaperPathway interactionsPeripheralPhosphorylationPhosphotransferasesPlayProcessPropertyProtein DephosphorylationProtein Phosphatase 2A Regulatory Subunit PR53RadialResearchResistanceRoleSchemeSecureSerineSignal PathwaySignal TransductionSignaling MoleculeSourceStimulusSumSurfaceSystemTestingTimeTissuesTravelVisionWorkaddictionbasecalmodulin-dependent protein kinase IIcell typeexcitatory neuronmembermolecular dynamicsmutantneocorticalneuron developmentneuropsychiatrynoveloperationprotein expressionpublic health relevanceresponsesmall hairpin RNAsymportertranscription factorvoltage
项目摘要
DESCRIPTION (provided by applicant): Excitation-transcription (E-T) coupling is a process that converts the electrical or chemical activation of a cell to a signal conveyed to the nucleus. n this way, the expression of genes can be modulated in an activity-dependent manner. The neuronal remodeling that results is recognized to be necessary and important for long-term adaptive changes during neuronal development, learning and memory and drug addiction. The most scrutinized example of E-T coupling is Ca2+ signaling to the transcription factor CREB (cAMP response element-binding) protein via phosphorylation at Ser133. As an important source of Ca2+ influx, voltage-gated Ca2+ channels have been well studied for their biophysical and biochemical properties. Interestingly, in E-T coupling it seems that Ca2+ influxes through different Ca2+ channels can engage different signaling pathways to the nucleus. For example, CaV1 (also called L-type) channels enjoy a big advantage over CaV2 channels, even though CaV1 channels contribute only a minority of the overall Ca2+ entry in neurons. Our recent Cell paper uncovered that this disparity in potency can be explained by differences in how the two classes of Ca2+ channels employ local and global Ca2+ signaling. However, the 'private line' for the nanodomain advantage of CaV1 channels is unclear. Now we are poised to provide a detailed characterization of the critical question: what carries the long-distance signal from CaV1-anchored signaling complex to the nucleus? We have an answer: Ca2+/CaM translocation to the nucleus depends on a co-transporter that we now identify as γCaMKII. This shuttle gathers cytoplasmic Ca2+/CaM, sequestering it at the CaV1 channel before traveling to the nucleus under control of a nuclear localization signal. This signaling mechanism relies on γCaMKII, βCaMKII and CaN, signaling molecules that operate in the CaV1 nanodomain and also have been implicated in multiple neuropsychiatric diseases. This proposal focuses on understanding the cellular machinery of γCaMKII/CaM translocation and three specific aims are proposed. (1) Define the dynamics of Ca2+ signaling mechanisms that link CaV1 activity to nuclear CREB phosphorylation and CRE-dependent transcription. We will track γCaMKII translocation in real time and assess the impact of Ca2+/CaM delivered to the nucleus via this shuttle mechanism. (2) We will manipulate the γCaMKII pathway using genetic constructs in order to nail down the molecular components required for CREB phosphorylation. We will alter binding interactions and enzymatic actions involving CaM, βCaMKII, CaN, and PP2A at critical steps along the pathway. (3) Understand CaV1-dependent CaM shuttling in neocortical neurons and define distinct roles of nanodomain Ca2+ signaling and voltage gated conformational signaling for E-T coupling. Gaining a clearer picture of the linkage between CaV1 channels and CREB signaling will have a favorable impact on understanding how changes in gene expression alter the function of neurons in neural networks. Thus, the research is relevant both to basic cell
biology and to disease states as diverse as addiction, autism and other neuropsychiatric diseases.
描述(申请人提供):激发-转录(E-T)偶联是将细胞的电或化学激活转化为传递到细胞核的信号的过程。通过这种方式,基因的表达可以以一种依赖于活性的方式进行调节。神经元重塑被认为对神经元发育、学习记忆和药物成瘾过程中的长期适应性变化是必要的和重要的。最受关注的E-T偶联的例子是通过Ser133的磷酸化向转录因子CREB(cAMP反应元件结合)蛋白发送信号。作为钙离子内流的重要来源,电压门控钙离子通道的生物物理和生化特性受到了广泛的研究。有趣的是,在E-T偶联中,似乎钙离子通过不同的钙通道内流可以通过不同的信号通路进入细胞核。例如,CaV1(也称为L型)通道比CaV2通道具有很大的优势,尽管CaV1通道只贡献了神经元整体钙离子进入的一小部分。我们最近的细胞论文发现,这种效力上的差异可以用两类钙离子通道使用局部和全局钙信号的不同来解释。然而,CaV1通道纳米结构域优势的“专线”还不清楚。现在我们准备提供一个关键问题的详细描述:是什么将长距离信号从CaV1锚定的信号复合体携带到细胞核?我们有一个答案:Ca~(2+)/CaM到细胞核的转运依赖于一个共转运体,我们现在确定它是γCaMKII。这种航天飞机收集细胞质中的钙/钙调素,将其隔离在CaV1通道上,然后在核定位信号的控制下传输到细胞核。这种信号机制依赖于γCaMKII、βCaMKII和CaN,这三种信号分子工作在CaV1纳米结构域中,也与多种神经精神疾病有关。这项建议侧重于了解γCaMKII/CaM易位的细胞机制,并提出了三个具体目标。(1)确定CaV1活性与核CREB磷酸化和Cre依赖转录相关的钙信号机制的动态变化。我们将实时跟踪γCaMKII的易位,并评估通过这种穿梭机制运送到细胞核的钙/钙调素的影响。(2)我们将使用基因结构来操纵CREBCaMKII途径,以确定γ磷酸化所需的分子成分。我们将在途径的关键步骤改变涉及CaM、βCaMKII、CaN和PP2A的结合相互作用和酶作用。(3)了解CaV1依赖的CaM在新皮质神经元中的穿梭,明确纳米结构域钙信号和电压门控构象信号在E-T偶联中的不同作用。更清楚地了解CaV1通道和CREB信号之间的联系将对理解基因表达的变化如何改变神经网络中神经元的功能有有利的影响。因此,这项研究既与基础细胞相关,也与基础细胞相关
生物和疾病状态的多样性,如成瘾、自闭症和其他神经精神疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD W TSIEN其他文献
RICHARD W TSIEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD W TSIEN', 18)}}的其他基金
Oxytocin Modulation of Neural Circuit Function and Behavior
催产素对神经回路功能和行为的调节
- 批准号:
10676011 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
Calcium Channels, CaMKII and Mechanisms of Excitation-Transcription Coupling
钙通道、CaMKII 和兴奋转录偶联机制
- 批准号:
10522762 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
Calcium Channels, CaMKII and Mechanisms of Excitation-Transcription Coupling
钙通道、CaMKII 和兴奋转录偶联机制
- 批准号:
10636887 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
Biophysical and Circuit Mechanisms of OXTR signaling
OXTR信号的生物物理和电路机制
- 批准号:
10438594 - 财政年份:2018
- 资助金额:
$ 40.26万 - 项目类别:
Oxytocin Modulation of Neural Circuit Function and Behavior
催产素对神经回路功能和行为的调节
- 批准号:
10220151 - 财政年份:2018
- 资助金额:
$ 40.26万 - 项目类别:
Oxytocin Modulation of Neural Circuit Function and Behavior
催产素对神经回路功能和行为的调节
- 批准号:
10438587 - 财政年份:2018
- 资助金额:
$ 40.26万 - 项目类别:
Oxytocin Modulation of Neural Circuit Function and Behavior
催产素对神经回路功能和行为的调节
- 批准号:
10705986 - 财政年份:2018
- 资助金额:
$ 40.26万 - 项目类别:
Oxytocin Modulation of Neural Circuit Function and Behavior - Revision - 3
催产素对神经回路功能和行为的调节 - 修订版 - 3
- 批准号:
10601831 - 财政年份:2018
- 资助金额:
$ 40.26万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Research Grant