ROBAS: A Multimodal Sensor System for Remote Assessment of Oral Health Behaviors

ROBAS:用于远程评估口腔健康行为的多模态传感器系统

基本信息

  • 批准号:
    8946121
  • 负责人:
  • 金额:
    $ 49.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2020-05-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Dental disease is one of the most common chronic diseases in the United States and exacts a substantial personal and societal toll. A large body of research links dental disease to poor oral hygiene behaviors such as inadequate brushing and flossing, but fails to explain adequately how these putative causal relationships arise or are mediated. Traditional retrospective self-reports are susceptible to numerous biases and lack the granularity and scientific rigor needed to rigorously test hypotheses about causal pathways. To solve the vexing challenges of oral behavior measurement, we have assembled a multidisciplinary team of scientists and engineers to develop a Remote Oral Behaviors Assessment System (ROBAS) that can provide objective, individual-level and ecologically-valid data on oral hygiene behaviors. Building on a strong body of research priors and innovative technologies developed by our team, our academic-industry partnership will build, test, refine and field-validate ROBAS in three sequential stages with their corresponding specific aims. In Stage 1, we will develop ROBAS by integrating a sensor-enabled toothbrush with a wrist actigraph and a data analytics system and then bench-test and iteratively refine it using computerized simulators and test subjects (Aim 1). In Stage 2, we will pilot-test ROBAS in a cohort of 32 healthy subjects to optimize its performance and usability in naturalistic settings (Aim 2). Data collected on the objective (precision, validity, reliability), subjective (user satisfaction, acceptability) and user performance parameters will be used to further refine ROBAS validity, reliability and functionality. In Stage 3, we will use a randomized, controlled, crossover study contrasting 60 at-risk (substance using) individuals with 60 comparable controls to evaluate ROBAS's capacity for longitudinal (6 months) assessment of oral health behaviors (OHBs) in naturalistic settings. Specifically, we will test ROBAS's clinical utility and incrementa validity over retrospective self-reports and Ecological Momentary Assessments (EMAs) (Aim 3). Additionally, we will use an articulated theoretical framework to investigate the associations among sociobehavioral determinants, OHBs (measured by self-reports, EMAs and ROBAS), and dental disease indicators (gingivitis and dental plaque) (Aim 4). Evaluating ROBAS in community subjects with different levels of risk for dental disease (substance users and non-users) will facilitate translatability of our research. The tightly coordinated academic-industry alliance will ensure rapid productization and availability of ROBAS (project deliverable). The ability to collect granular, ecologically-valid data for long periods of time will afford unprecedented opportunity to develop and rigorously test more sophisticated causal models of oral health behaviors and glean fundamental insights regarding behavior change processes. The paradigm shift from the conventional rescue- driven model of dental care to a proactive preventive approach, based on sensor-enabled behavioral analysis, has the potential to fundamentally transform the delivery of dental care. Equally important, the technological innovations of our project will have broad application in a variety of social, behavioral and clinical settings.
 描述(由申请人提供):牙科疾病是美国最常见的慢性疾病之一,对个人和社会造成巨大损失。大量的研究将牙科疾病与不良的口腔卫生行为联系起来,如刷牙和使用牙线不足,但未能充分解释这些假定的因果关系是如何产生或介导的。传统的回顾性自我报告容易受到许多偏见的影响,并且缺乏严格测试因果路径假设所需的粒度和科学严谨性。为了解决口腔行为测量的棘手挑战,我们组建了一个由科学家和工程师组成的多学科团队,开发了一个远程口腔行为评估系统(ROBAS),可以提供客观,个人水平和生态有效的口腔卫生行为数据。基于我们团队开发的强大的研究先验和创新技术,我们的学术-行业合作伙伴关系将在三个连续阶段建立,测试,完善和现场验证ROBAS,并制定相应的具体目标。在第一阶段,我们将通过将传感器牙刷与手腕活动记录仪和数据分析系统集成来开发ROBAS,然后使用计算机模拟器和测试对象进行实验室测试和迭代改进(目标1)。在第二阶段,我们将在32名健康受试者中进行ROBAS的试点测试,以优化其在自然环境中的性能和可用性(目标2)。收集的客观(精确度、有效性、可靠性)、主观(用户满意度、可接受性)和用户性能参数数据将用于进一步完善ROBAS有效性、可靠性和功能。在第3阶段,我们将使用一项随机、对照、交叉研究,将60名有风险(物质使用)的个体与60名可比对照进行对比,以评估ROBAS在自然环境中对口腔健康行为(OHB)进行纵向(6个月)评估的能力。具体来说,我们将测试ROBAS的临床效用和增量有效性超过回顾性自我报告和生态瞬时评估(EMA)(目标3)。此外,我们将使用一个明确的理论框架来调查社会行为决定因素,OHB(通过自我报告,EMA和ROBAS测量)和牙科疾病指标(牙龈炎和牙菌斑)之间的关联(目标4)。在社区受试者中评估ROBAS,这些受试者具有不同程度的牙病风险(物质使用者和非使用者),这将有助于我们研究的可翻译性。紧密协调的学术-工业联盟将确保ROBAS(项目交付)的快速产品化和可用性。长期收集颗粒状、生态有效数据的能力将为开发和严格测试更复杂的口腔健康行为因果模型提供前所未有的机会,并收集有关行为变化过程的基本见解。基于传感器启用的行为分析,从牙科护理的传统救援驱动模式到主动预防方法的范式转变具有从根本上改变牙科护理的提供的潜力。同样重要的是,我们项目的技术创新将在各种社会、行为和临床环境中得到广泛应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

VIVEK SHETTY其他文献

VIVEK SHETTY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('VIVEK SHETTY', 18)}}的其他基金

mDOT Training and Dissemination
mDOT 培训和传播
  • 批准号:
    10541812
  • 财政年份:
    2020
  • 资助金额:
    $ 49.6万
  • 项目类别:
Personalized Digital Behavior Change Interventions to Promote Oral Health
个性化数字行为改变干预措施促进口腔健康
  • 批准号:
    10429895
  • 财政年份:
    2019
  • 资助金额:
    $ 49.6万
  • 项目类别:
Personalized Digital Behavior Change Interventions to Promote Oral Health
个性化数字行为改变干预措施促进口腔健康
  • 批准号:
    10610734
  • 财政年份:
    2019
  • 资助金额:
    $ 49.6万
  • 项目类别:
ROBAS: A Multimodal Sensor System for Remote Assessment of Oral Health Behaviors
ROBAS:用于远程评估口腔健康行为的多模态传感器系统
  • 批准号:
    9488352
  • 财政年份:
    2015
  • 资助金额:
    $ 49.6万
  • 项目类别:
ROBAS: A Multimodal Sensor System for Remote Assessment of Oral Health Behaviors
ROBAS:用于远程评估口腔健康行为的多模态传感器系统
  • 批准号:
    9096747
  • 财政年份:
    2015
  • 资助金额:
    $ 49.6万
  • 项目类别:
Training Institutes for mobile health (mHealth) methodologies
移动医疗 (mHealth) 方法培训机构
  • 批准号:
    8769965
  • 财政年份:
    2014
  • 资助金额:
    $ 49.6万
  • 项目类别:
Training Institutes for mobile health (mHealth) methodologies
移动医疗 (mHealth) 方法培训机构
  • 批准号:
    10576966
  • 财政年份:
    2014
  • 资助金额:
    $ 49.6万
  • 项目类别:
Training Institutes for mobile health (mHealth) methodologies
移动医疗 (mHealth) 方法培训机构
  • 批准号:
    10375377
  • 财政年份:
    2014
  • 资助金额:
    $ 49.6万
  • 项目类别:
Training Institutes for mobile health (mHealth) methodologies
移动医疗 (mHealth) 方法培训机构
  • 批准号:
    8898041
  • 财政年份:
    2014
  • 资助金额:
    $ 49.6万
  • 项目类别:
Training Institutes for mobile health (mHealth) methodologies
移动医疗 (mHealth) 方法培训机构
  • 批准号:
    9127200
  • 财政年份:
    2014
  • 资助金额:
    $ 49.6万
  • 项目类别:

相似海外基金

Developing deep learning algorithms for studying infant brain and behavior relationships
开发深度学习算法来研究婴儿大脑和行为关系
  • 批准号:
    10263607
  • 财政年份:
    2021
  • 资助金额:
    $ 49.6万
  • 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
  • 批准号:
    10001503
  • 财政年份:
    2018
  • 资助金额:
    $ 49.6万
  • 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
  • 批准号:
    9789318
  • 财政年份:
    2018
  • 资助金额:
    $ 49.6万
  • 项目类别:
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
  • 批准号:
    1714672
  • 财政年份:
    2017
  • 资助金额:
    $ 49.6万
  • 项目类别:
    Standard Grant
EAGER: Using Learning Algorithms to Morph Product Behavior for Specific Task Contexts and Cognitive Styles of Users
EAGER:使用学习算法针对特定任务环境和用户认知风格来改变产品行为
  • 批准号:
    1548234
  • 财政年份:
    2015
  • 资助金额:
    $ 49.6万
  • 项目类别:
    Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
  • 批准号:
    1559588
  • 财政年份:
    2015
  • 资助金额:
    $ 49.6万
  • 项目类别:
    Continuing Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
  • 批准号:
    1254117
  • 财政年份:
    2013
  • 资助金额:
    $ 49.6万
  • 项目类别:
    Continuing Grant
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 49.6万
  • 项目类别:
    Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 49.6万
  • 项目类别:
    Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 49.6万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了