Using Integrative Networks to Explore Heterogeneous Phenotypes in COPD
使用综合网络探索 COPD 的异质表型
基本信息
- 批准号:9164450
- 负责人:
- 金额:$ 18.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AmericanAreaAutomobile DrivingAwardBenchmarkingBiologicalBiological ProcessBiologyBloodCancer CenterCellsChIP-seqCharacteristicsChestChronic Obstructive Airway DiseaseClinicalClinical DataComplexComputer ArchitecturesDataData AnalysesData ScienceData SetDatabasesDiseaseEducational workshopEnvironmentEpigenetic ProcessFacultyFundingGene Expression RegulationGenesGeneticGenomeGenomic approachGenomicsGenotype-Tissue Expression ProjectGlassGoalsGrantHeterogeneityHistocompatibility TestingHospitalsImageIndividualInformation NetworksInstitutesInstitutionKnowledgeLinkLungLung diseasesMassachusettsMeasuresMediatingMedicalMedicineMentorsMethodsMicroRNAsModelingNaturePathogenesisPathway AnalysisPathway interactionsPatientsPhenotypePhysicsPlayPopulationPopulation HeterogeneityProcessPropertyProteomePublic Health SchoolsQualifyingRegulator GenesResearchResearch PersonnelResearch TrainingResourcesRoleSamplingScienceSocietiesSourceStatistical ModelsStructureStructure of parenchyma of lungSystemTechnologyTissuesTrainingTraining ProgramsTranslationsUniversitiesWashingtonWomanWorkWritingabstractingcareercatalystclinical applicationcomputer sciencecomputing resourcesdata integrationdisease heterogeneitydisease phenotypeeffective therapyepigenomeexperiencegenomic datainnovationinsightmedical schoolsmeetingsmembermetabolomemethod developmentnetwork modelsnew technologyphenotypic dataprecision medicinereconstructionrespiratoryskillsstatisticssymposiumtargeted treatmenttooltranscriptometranslational medicinetreatment responsetreatment strategy
项目摘要
Project Summary/Abstract
Rapidly evolving genomic technologies are providing unprecedented amounts of data with the potential to
yield new insights into the processes driving lung disease, including Chronic Obstructive Pulmonary Disease
(COPD). These data have already allowed us to develop a more unified understanding of how multiple
biological mechanisms work together to influence COPD. We now appreciate that in most cases a single gene
or pathway does not fully characterize the disease or alterations in disease-state. Rather, disease-related
changes often involve simultaneous alterations to the genome, epigenome, transcriptome, metabolome, and
proteome of the cell and can be represented by complex networks whose structures are altered as the disease
develops. Importantly, many of these changes are associated with complex shifts in the regulatory networks
from the normal to a diseased state. Modeling these changes can inform us about the processes that drive
COPD and suggest potential targeted therapies.
In this proposal we develop and expand methods for integrating emerging multi-omic data to reconstruct
comprehensive regulatory networks in COPD. We then develop approaches for analyzing these networks and
for effectively linking regulatory alterations with disease mechanisms within different observed COPD
phenotypes. We begin by developing quantitative approaches for inferring, analyzing, decomposing and
comparing networks. These methods will allow us to discover new features about the nature of lung disease, to
understand the complex regulatory processes at work across patients, and ultimately have the power suggest
ways to more effectively treat COPD.
Executing on this plan will require a unique set of skills that span biology, network science, computer
science, translational medicine and lung disease. Dr. Glass’ background is in physics, complex systems and
genomic data analysis. Although her previous experiences have prepared her well for the proposed research,
she recognizes that there are new challenges that need to be overcome when applying networks and
genomics approaches to study COPD. Therefore, Dr. Glass has selected a mentored research environment
and crafted a training program that will allow her to obtain the interdisciplinary skills necessary to accomplish
the goals of this project.
In support of her proposed research, Dr. Glass will make use of the many high-quality computational
resources available to her through the Channing Division of Network Medicine (CDNM) at Brigham and
Women’s Hospital (BWH), the Dana-Farber/Harvard Cancer Center, Harvard Medical School, and the Harvard
School of Public Health and well as additional resources directly provided by her mentors and advisory board
members. Along these lines, Dr. Glass has assembled a diverse and well-qualified mentoring team to oversee
and advise her research efforts. Her primary mentor, Dr. Quackenbush, and advisory board member Dr. Yuan
both have extensive and complementary experience in analyzing and interpreting many types of genomic data.
Advisory board member Dr. Kepner has deep knowledge of scalable computer architecture and will support Dr.
Glass by providing computational resources such as access to the MIT SuperCloud. After constructing
regulatory networks in COPD, interpreting them in the context of relevant biological questions will be essential.
Advisory board member Dr. Onnela is an expert in developing methods for network quantification and will play
an important role in helping Dr. Glass to create objective measures of network structural differences. Finally,
co-mentor Dr. Silverman is a leading expert in COPD and network medicine, and will provide important
guidance to Dr. Glass as she determines how to relate network measures to patient data, including relevant
clinical features of COPD.
Dr. Glass will supplement her hands-on training with formal coursework and specific mentored exploration
focused in three main areas: 1) Lung disease, translational medicine and clinical applications, with training
through courses offered through the Harvard Catalyst and Harvard School of Public Health, attending the
annual American Thoracic Society meeting, and working closely with Dr. Silverman and the Respiratory
Medicine faculty at the CDNM/BWH; 2) Biomedical data analysis and computation, with training from taking
online classes offered by the University of Washington and Massachusetts Institute of Technology, attending
local workshops and working closely with Drs. Quackenbush, Yuan and Kepner; and 3) Statistics and network
analysis methods development, with training from taking courses offered by the Harvard School of Public
Health, attending national conferences, and working closely with Drs. Quackenbush and Onnela. Finally, Dr.
Glass will actively participate in and receive training on the grant writing process throughout the award period,
so as to be well-prepared to apply for independent funding at the conclusion of the project.
Dr. Glass’s career goal is to become an independent investigator studying non-neoplastic lung disease at
an academic institution. Through the proposed research and training plan, she will be able to hone the
computational abilities she has already developed and collect a variety of additional skills that will be essential
to becoming an independent investigator capable of leveraging biomedical data to perform computational
research and network analysis that has translational applications in COPD and lung disease.
项目摘要/摘要
快速发展的基因组技术正在提供前所未有的海量数据,有可能
对包括慢性阻塞性肺疾病在内的肺部疾病的驱动过程有了新的见解
(COPD)。这些数据已经使我们能够更统一地理解
生物机制共同作用影响COPD。我们现在意识到,在大多数情况下,单个基因
或途径不能完全描述疾病或疾病状态的改变。更确切地说,与疾病有关
变化通常涉及基因组、表观基因组、转录组、代谢组和
细胞的蛋白质组,可由复杂的网络表示,其结构随着疾病的变化而改变
发展起来。重要的是,这些变化中的许多与监管网络的复杂变化有关
从正常状态到疾病状态。对这些变化进行建模可以让我们了解驱动这些变化的过程
并建议潜在的靶向治疗。
在这个建议中,我们开发和扩展了集成新兴的多组数据以重建的方法
全面的慢性阻塞性肺病监管网络。然后,我们开发分析这些网络的方法,并
在不同观察到的COPD中有效地将调节变化与疾病机制联系起来
表型。我们首先开发定量的方法来推断、分析、分解和
比较网络。这些方法将使我们能够发现关于肺部疾病本质的新特征,
了解患者工作中复杂的监管流程,并最终有能力建议
如何更有效地治疗慢性阻塞性肺病。
执行这一计划将需要一套独特的技能,涵盖生物学、网络科学、计算机
科学、转化医学和肺部疾病。格拉斯博士的背景是物理学、复杂系统和
基因组数据分析。尽管她之前的经验为她提出的研究做好了准备,
她认识到在应用网络和网络时需要克服新的挑战
研究慢性阻塞性肺疾病的基因组学方法。因此,格拉斯博士选择了一个有指导的研究环境
并制定了一项培训计划,使她能够获得完成任务所需的跨学科技能
这个项目的目标。
为了支持她提出的研究,格拉斯博士将利用许多高质量的计算
她可通过布里格姆大学钱宁网络医学部(CDNM)获得的资源
妇女医院(BWH)、达纳-法伯/哈佛癌症中心、哈佛医学院和哈佛大学
公共卫生学院,以及她的导师和顾问委员会直接提供的额外资源
会员。按照这些思路,格拉斯博士组建了一支多样化的、资质良好的指导团队,负责监督
并为她的研究工作提供建议。她的主要导师奎肯布什博士和顾问委员会成员袁博士
两者在分析和解释多种类型的基因组数据方面都有广泛和互补的经验。
顾问委员会成员Kepner博士对可伸缩计算机体系结构有深入的了解,并将为Dr。
玻璃通过提供计算资源,如访问麻省理工学院超级云。施工后
关于慢性阻塞性肺病的监管网络,在相关生物学问题的背景下对其进行解释将是至关重要的。
顾问委员会成员Onnela博士是开发网络量化方法的专家,他将在
在帮助格拉斯博士创建网络结构差异的客观衡量标准方面发挥了重要作用。最后,
共同导师Silverman博士是COPD和网络医学方面的领先专家,将为
为Glass博士提供指导,以确定如何将网络测量与患者数据相关联,包括相关
慢性阻塞性肺疾病的临床特点。
格拉斯博士将用正式的课程和有指导的具体探索来补充她的实践训练
侧重于三个主要领域:1)肺部疾病、转化医学和临床应用,并接受培训
通过哈佛大学促进会和哈佛公共卫生学院提供的课程,参加
美国胸科学会年度会议,并与西尔弗曼博士和呼吸科密切合作
CDNM/BWH的医学系;2)生物医学数据分析和计算,通过
华盛顿大学和麻省理工学院提供的在线课程,参加
当地讲习班,并与QuackenBush、袁和Kepner博士密切合作;3)统计和网络
分析方法的发展,通过参加哈佛公共学院提供的课程进行培训
健康,参加国家会议,并与夸肯布什博士和昂内拉博士密切合作。最后,戴维斯博士说。
在整个授权期内,格拉斯将积极参与和接受赠款编写过程的培训,
以便做好准备,在项目结束时申请独立资金。
格拉斯博士的职业目标是成为一名研究非肿瘤性肺部疾病的独立研究员
一个学术机构。通过建议的研究和培训计划,她将能够磨练
她已经开发了计算能力,并收集了各种必要的额外技能
成为能够利用生物医学数据进行计算的独立调查者
在慢性阻塞性肺疾病和肺部疾病中有翻译应用的研究和网络分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kimberly Renee Glass其他文献
Kimberly Renee Glass的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kimberly Renee Glass', 18)}}的其他基金
Leveraging Variant-perturbed Gene Regulation to Support Precision Medicine in COPD
利用变异扰动的基因调控支持慢性阻塞性肺病的精准医疗
- 批准号:
10365114 - 财政年份:2022
- 资助金额:
$ 18.9万 - 项目类别:
Leveraging Variant-perturbed Gene Regulation to Support Precision Medicine in COPD
利用变异扰动的基因调控支持慢性阻塞性肺病的精准医疗
- 批准号:
10583539 - 财政年份:2022
- 资助金额:
$ 18.9万 - 项目类别:
Using Integrative Networks to Explore Heterogeneous Phenotypes in COPD
使用综合网络探索 COPD 的异质表型
- 批准号:
9320981 - 财政年份:2016
- 资助金额:
$ 18.9万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant














{{item.name}}会员




