A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
基本信息
- 批准号:9028226
- 负责人:
- 金额:$ 61.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-12-01 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAddressAdhesivesAdultAffectAirAmericanAnimal ModelAnisotropyBasement membraneBehaviorBiochemicalBiologicalBiologyBiomechanicsBiomimeticsBioreactorsCell CommunicationCell Culture TechniquesCell modelCellsChemicalsCommunicationConnective TissueCuesDelawareDevelopmentDevicesDiseaseEngineeringEnvironmentEpithelialEpithelial CellsEpitheliumExtracellular MatrixFiberFibroblastsFosteringFoxesFunctional disorderGelGeometryGrowthHealthHumanHyaluronic AcidHybridsHydrogelsIn VitroLaboratoriesLamina PropriaLarynxLeadLigamentsLigationLiquid substanceLungMechanical StimulationMechanicsMesenchymalModelingMolecularMotionMucous MembraneMuscleOperative Surgical ProceduresPathologyPhysiologyPliabilityPluripotent Stem CellsPredispositionProceduresPropertyProteinsQuality of lifeReactionReportingResearch PersonnelRoleSideSignal TransductionStem cellsStratified Squamous EpitheliumStructureSurfaceTestingTissue EngineeringTissue ModelTissuesTracheaUniversitiesVariantVoiceVoice DisordersWaterWisconsinWorkbasecell growthcell typeclinically relevantcopolymercrosslinkcycloadditiondensityhuman tissueimprovedinduced pluripotent stem cellinterfacialkeratinocytemimeticsmuscle stiffnesspolymerizationprogramspublic health relevancereconstructionresponsescreeningsoundstemvibrationvocal cordvocalis muscle
项目摘要
DESCRIPTION (provided by applicant): Voice is produced when the vocal folds are driven into a wave-like motion by the airstream from the trachea, converting aerodynamic energy and airflow into acoustic energy in the form of sound. The key to this great mechanical versatility lie in the unique structure and composition of the tissue. Each vocal fold consists of a pliable vibratory layer of connective tissue, known as the lamina propria (LP), sandwiched between a muscle and an epithelial layer. The structure and mechanics of the LP change gradually from the muscle to the epithelium. Numerous environmental, mechanical and pathological factors can damage this delicate tissue, resulting in a wide spectrum of voice disorders that affect millions o Americans. Current treatment options for vocal fold disorders are limited, and the development of new procedures has been slow owing to the inaccessibility of the tissue, its susceptibility to damage, and the anatomical differences of animal models from the human tissue. This project aims to engineer a reliable, physiologically relevant in vitro tissue model that can be used to investigate vocal fold development, health, and disease, and more importantly, to facilitate the development and testing of new treatment options. The central hypothesis of the proposed work is that vocal fold-mimetic synthetic extracellular matrices (sECMs) displaying a layered and gradient structure with tissue- like anisotropy will provide the resident cells with guidance cues for the establishment of appropriate tissue structures. The initial template effects from the sECMs will be further reinforced by the application of physiologically relevant vibratory stimulations, ultimately producing a viable and functional vocal fold tissue model. In Aim 1, we will create sECMs using modular building blocks and employing a rapid bioorthogonal reaction at well-defined interfaces. The resultant sECM will consist of a bottom fibrous layer, a basement membrane-like top layer and a middle gel layer with a gradient of crosslinking density and biochemical signals. In Aim 2, we will produce and characterize stem cell-derived vocal fold epithelial cells. The differentiated epithelial cells will be grown on sECMs populated by primary human vocal fold fibroblasts (VFFs). Culture conditions will be identified to foster the epithelialization of the engineered LP. In Aim 3, we will fabricate a self- oscillating tissue construct, consisting of the VFF-laden sECM supported on a cell-free synthetic hydrogel with geometry and mechanics reflecting that of the vocal fold muscle. The construct, maintained under standard cell culture conditions, will be regularly transferred to an oscillatory bioreactor or mechanical stimulations. Under the engineered, vocal fold-mimetic microenvironment, VFFs will actively remodel the synthetic environment, secrete native matrix components, and communicate with the tethered epithelial cells to establish a cohesive and functional tissue. Overall, the combination of tissue-mimetic synthetic matrix, pluripotent stem cells and a vibratory culture device offers an exciting opportunity for the engineering of reliable and viable vocal fold tissue models.
描述(申请人提供):当声带被来自气管的气流驱动成波浪状运动时,将空气动力能和气流转化为声音形式的声能,从而产生声音。这种巨大的机械多功能性的关键在于组织的独特结构和成分。每个声带都由一层柔韧的结缔组织振动层组成,称为固有层 (LP),夹在肌肉和上皮层之间。 LP的结构和力学从肌肉到上皮逐渐变化。许多环境、机械和病理因素都会损害这种脆弱的组织,导致影响数百万美国人的广泛的声音障碍。目前声带疾病的治疗选择有限,并且由于组织难以接近、易于损伤以及动物模型与人体组织的解剖学差异,新疗法的开发也很缓慢。该项目旨在设计一种可靠的、生理相关的体外组织模型,可用于研究声带发育、健康和疾病,更重要的是,促进新治疗方案的开发和测试。这项工作的中心假设是,模拟声带的合成细胞外基质(sECM)显示出具有组织样各向异性的分层和梯度结构,将为驻留细胞提供建立适当组织结构的指导线索。 sECM 的初始模板效应将通过生理相关振动刺激的应用得到进一步加强,最终产生可行且功能性的声带组织模型。在目标 1 中,我们将使用模块化构建块并在明确定义的界面上采用快速生物正交反应来创建 sECM。所得的 sECM 将由底部纤维层、基膜状顶层和具有交联密度和生化信号梯度的中间凝胶层组成。在目标 2 中,我们将产生干细胞来源的声带上皮细胞并对其进行表征。分化的上皮细胞将在由原代人声带成纤维细胞(VFF)填充的 sECM 上生长。将确定培养条件以促进工程化 LP 的上皮化。在目标 3 中,我们将制造一个自振荡组织结构,由支撑在无细胞合成水凝胶上的充满 VFF 的 sECM 组成,其几何形状和力学反映了声带肌肉的几何形状和力学。在标准细胞培养条件下维持的构建体将定期转移到振荡生物反应器或机械刺激中。在工程化的模仿声带的微环境下,VFF 将主动重塑合成环境,分泌天然基质成分,并与束缚的上皮细胞进行通信,以建立有粘性和功能的组织。总体而言,组织模拟合成基质、多能干细胞和振动培养装置的结合为可靠且可行的声带组织模型的工程设计提供了令人兴奋的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinqiao Jia其他文献
Xinqiao Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinqiao Jia', 18)}}的其他基金
Bottom-Up Assembly of Functional Salivary Gland Tissues
功能性唾液腺组织的自下而上组装
- 批准号:
10400243 - 财政年份:2021
- 资助金额:
$ 61.17万 - 项目类别:
Bottom-Up Assembly of Functional Salivary Gland Tissues
功能性唾液腺组织的自下而上组装
- 批准号:
10546502 - 财政年份:2021
- 资助金额:
$ 61.17万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10604269 - 财政年份:2015
- 资助金额:
$ 61.17万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10209183 - 财政年份:2015
- 资助金额:
$ 61.17万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10394924 - 财政年份:2015
- 资助金额:
$ 61.17万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
9193072 - 财政年份:2015
- 资助金额:
$ 61.17万 - 项目类别:
ELASTOMERIC POLYMERS & TUNABLE BIOLOGICAL FUNCTIONS FOR VOCAL FOLD TISSUE ENG
弹性聚合物
- 批准号:
8360585 - 财政年份:2011
- 资助金额:
$ 61.17万 - 项目类别:
ELASTOMERIC POLYMERS & TUNABLE BIOLOGICAL FUNCTIONS FOR VOCAL FOLD TISSUE ENG
弹性聚合物
- 批准号:
8168491 - 财政年份:2010
- 资助金额:
$ 61.17万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 61.17万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 61.17万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 61.17万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 61.17万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 61.17万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 61.17万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 61.17万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 61.17万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 61.17万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 61.17万 - 项目类别:
Research Grant














{{item.name}}会员




