ELASTOMERIC POLYMERS & TUNABLE BIOLOGICAL FUNCTIONS FOR VOCAL FOLD TISSUE ENG
弹性聚合物
基本信息
- 批准号:8360585
- 负责人:
- 金额:$ 31.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesivesAirAmino AcidsArchitectureBiochemicalBiocompatible MaterialsBiologicalBiological FactorsBiological ProcessCaringCell ProliferationCellsCenters of Research ExcellenceCharacteristicsChemicalsClinicalCuesDevicesDiseaseElasticityElastinElastomersEngineeringExhibitsExtracellular MatrixFacultyFrequenciesFundingGrantHeparin BindingHybridsLamina PropriaMatrix MetalloproteinasesMechanical StimulationMechanical StressMechanicsMethodsMolecularNational Center for Research ResourcesNatural regenerationNatureOrganic ChemistryPediatric HospitalsPeptide SynthesisPeptidesPolymer ChemistryPolymersPrincipal InvestigatorProductionPropertyProteinsResearchResearch InfrastructureResourcesRouteRubberSourceStreamStructureSystemTertiary Protein StructureTissue EngineeringTissuesUnited States National Institutes of Healthangiogenesisbasecareercostcrosslinkdesignelastomericmimeticsnovelpolypeptideresilienceresilinscaffoldsolid statesoundvocal cord
项目摘要
This subproject is one of many research subprojects utilizing the resources
provided by a Center grant funded by NIH/NCRR. Primary support for the subproject
and the subproject's principal investigator may have been provided by other sources,
including other NIH sources. The Total Cost listed for the subproject likely
represents the estimated amount of Center infrastructure utilized by the subproject,
not direct funding provided by the NCRR grant to the subproject or subproject staff.
One of the most remarkable mechanical devices that Nature has engineered consists of two small folds
of tissue called vocal folds, which are responsible for the production of a great variety of sounds when
vibrated by the tracheal air-stream. Under normal conditions, vocal folds can sustain up to 30% strain at
frequencies of 100 to 1000 Hz. However, excessive mechanical stresses and deleterious pathological
conditions can cause damage to this delicate system, resulting in a wide spectrum of vocal fold disorders. To
date, optimal treatment for vocal fold disorders has not yet been realized, and tissue engineering methods
hold promise for the regeneration of functional vocal folds. However, the unique biochemical composition,
structural organization, and viscoelastic properties of vocal folds have significantly complicated tissue
engineering efforts that utilize traditional polymeric biomaterials.
In this new collaborative effort that integrates the unique expertise of junior and early-career faculty, we
will produce novel bioactive elastomers that can be used as conducive scaffolds for vocal fold tissue
engineering. These biomaterials will capture the molecular architecture and mechanical characteristics of
natural elastic proteins (elastin and resilin); given the different physicochemical properties of these two
proteins, employing both will offer a comprehensive approach for tuning morphological, mechanical and
biological properties in the new materials. The elastin mimetic hybrid polymers (EMHP) will comprise a
multiblock structure with alternating hydrophobic, elastic synthetic domains and hydrophilic, peptide-based
cross-linking domains. The synthetic blocks are expected to show rubber-like elasticity that will functionally
mimic the properties of the elastic domains of elastin, while the peptide domains will serve both structural
and biological function. In addition, resilin-based modular polypeptides (RBMP) will be produced with
multiple repeats of unique functional modules including resilin-based peptide domains, heparin-binding
peptides, cell-adhesive peptides, and MMP-sensitive domains in order to produce materials that present
useful biological cues while exhibiting high resilience at high frequencies. Our synthetic strategies will exploit
the established versatility of synthetic polymer chemistry and solid state peptide synthesis, as well as new
orthogonal organic chemistry developed in this COBRE proposal. Chemical methods employing both natural
and non-natural amino acids will be used to crosslink EMHP and RBMP to systematically match mechanical
properties to those of the natural vocal fold lamina propria. With the aid of clinical collaborators at Christiana
Care and the A.I. duPont Hospital for Children, the bioactive elastomers will be evaluated for their ability to
promote vocal fold cell proliferation, angiogenesis, and ECM production. These new materials and
approaches offer promising routes to ultimately engineering functional vocal fold lamina propria via a
combination of viable cells, elastic scaffolds, biological factors and mechanical stimulation.
这个子项目是许多利用资源的研究子项目之一
由NIH/NCRR资助的中心拨款提供。子项目的主要支持
子项目的主要研究者可能是由其他来源提供的,
包括其他NIH来源。 列出的子项目总成本可能
代表子项目使用的中心基础设施的估计数量,
而不是由NCRR赠款提供给子项目或子项目工作人员的直接资金。
大自然设计的最引人注目的机械装置之一由两个小褶皱组成
一种叫做声带的组织,它负责产生各种各样的声音,
通过气管气流振动。在正常情况下,声带可以承受高达30%的应变,
频率为100至1000 Hz。然而,过度的机械应力和有害的病理性
条件可能会导致损害这一微妙的系统,导致广泛的声带疾病。到
迄今为止,声带疾病的最佳治疗尚未实现,组织工程方法
对功能性声带的再生有希望。然而,独特的生化成分,
结构组织和粘弹性特性的声带有显着复杂的组织
利用传统聚合物生物材料的工程努力。
在这种新的合作努力,整合了初级和早期职业教师的独特专业知识,我们
将产生新的生物活性弹性体,可用作声带组织的有益支架,
工程.这些生物材料将捕捉分子结构和机械特性,
天然弹性蛋白质(弹性蛋白和弹性蛋白);鉴于这两种蛋白质的不同物理化学性质,
蛋白质,采用两者将提供一个全面的方法,调整形态,机械和
新材料的生物学特性。弹性蛋白模拟杂化聚合物(EMHP)将包含弹性蛋白模拟杂化聚合物。
具有交替的疏水性、弹性合成域和亲水性、肽基
交联结构域。预计合成块将显示出类似橡胶的弹性,
模拟弹性蛋白的弹性结构域的性质,而肽结构域将同时起结构上的作用。
和生物功能。此外,将用以下方法产生基于节枝弹性蛋白的模块化多肽(RBMP):
独特功能模块的多个重复,包括基于节枝弹性蛋白的肽结构域、肝素结合
肽、细胞粘附肽和MMP-敏感结构域,以产生呈现
有用的生物线索,同时在高频率下表现出高弹性。我们的合成策略将利用
合成聚合物化学和固态肽合成的既定通用性,以及新的
正交有机化学在这个COBRE提案中发展。采用天然和化学方法
和非天然氨基酸将用于交联EMHP和RBMP,以系统地匹配机械性能。
天然声带固有层的特性。在Christiana的临床合作者的帮助下,
护理和人工智能杜邦儿童医院,将评估生物活性弹性体的能力,
促进声带细胞增殖、血管生成和ECM产生。这些新材料和
方法提供了有前途的途径,最终工程功能声带固有层通过
活细胞、弹性支架、生物因子和机械刺激的组合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinqiao Jia其他文献
Xinqiao Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinqiao Jia', 18)}}的其他基金
Bottom-Up Assembly of Functional Salivary Gland Tissues
功能性唾液腺组织的自下而上组装
- 批准号:
10400243 - 财政年份:2021
- 资助金额:
$ 31.05万 - 项目类别:
Bottom-Up Assembly of Functional Salivary Gland Tissues
功能性唾液腺组织的自下而上组装
- 批准号:
10546502 - 财政年份:2021
- 资助金额:
$ 31.05万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
9028226 - 财政年份:2015
- 资助金额:
$ 31.05万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10604269 - 财政年份:2015
- 资助金额:
$ 31.05万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10209183 - 财政年份:2015
- 资助金额:
$ 31.05万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10394924 - 财政年份:2015
- 资助金额:
$ 31.05万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
9193072 - 财政年份:2015
- 资助金额:
$ 31.05万 - 项目类别:
ELASTOMERIC POLYMERS & TUNABLE BIOLOGICAL FUNCTIONS FOR VOCAL FOLD TISSUE ENG
弹性聚合物
- 批准号:
8168491 - 财政年份:2010
- 资助金额:
$ 31.05万 - 项目类别:
相似国自然基金
湍流和化学交互作用对H2-Air-H2O微混燃烧中NO生成的影响研究
- 批准号:51976048
- 批准年份:2019
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
COMPAS: co integration of microelectronics and photonics for air and water sensors
COMPAS:微电子学和光子学的共同集成,用于空气和水传感器
- 批准号:
10108154 - 财政年份:2024
- 资助金额:
$ 31.05万 - 项目类别:
EU-Funded
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 31.05万 - 项目类别:
Standard Grant
SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
- 批准号:
2335500 - 财政年份:2024
- 资助金额:
$ 31.05万 - 项目类别:
Standard Grant
Catalyzing Sustainable Air Travel: Unveiling Consumer Willingness to Pay for Sustainable Aviation Fuel through Information Treatment in Choice Experiment and Cross-Country Analysis
促进可持续航空旅行:通过选择实验和跨国分析中的信息处理揭示消费者支付可持续航空燃油的意愿
- 批准号:
24K16365 - 财政年份:2024
- 资助金额:
$ 31.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
- 批准号:
2333683 - 财政年份:2024
- 资助金额:
$ 31.05万 - 项目类别:
Continuing Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
- 批准号:
2333684 - 财政年份:2024
- 资助金额:
$ 31.05万 - 项目类别:
Continuing Grant
CRII: CSR: Towards an Edge-enabled Software-Defined Vehicle Framework for Dynamic Over-the-Air Updates
CRII:CSR:迈向支持边缘的软件定义车辆框架,用于动态无线更新
- 批准号:
2348151 - 财政年份:2024
- 资助金额:
$ 31.05万 - 项目类别:
Standard Grant
Smoldering coarse woody debris and air quality
阴燃粗木质碎片和空气质量
- 批准号:
IM240100016 - 财政年份:2024
- 资助金额:
$ 31.05万 - 项目类别:
Mid-Career Industry Fellowships
Simulating Urban Air Pollution In The Lab
在实验室模拟城市空气污染
- 批准号:
MR/Y020014/1 - 财政年份:2024
- 资助金额:
$ 31.05万 - 项目类别:
Fellowship
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
- 批准号:
24K17404 - 财政年份:2024
- 资助金额:
$ 31.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists