Lipid Signaling in Chemotaxis
趋化作用中的脂质信号传导
基本信息
- 批准号:9100827
- 负责人:
- 金额:$ 31.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAmoeba genusArthritisAsthmaAtherosclerosisBackBehaviorBindingBinding ProteinsBiochemistryBiological AssayCell membraneCellsCellular biologyChemicalsChemotactic FactorsChemotaxisComplexControlled EnvironmentCytoskeletonCytosolDevelopmentDictyosteliumDiseaseEngineeringEnsureEukaryotic CellEventFundingGeneticGoalsGuanine Nucleotide Exchange FactorsGuanosine Triphosphate PhosphohydrolasesHealthHumanHypersensitivityImmune responseInflammationLeadLinkLipidsMalignant NeoplasmsMediatingMembraneMicrofilamentsModelingMolecularMorphogenesisMyosin ATPaseMyosin Type INeoplasm MetastasisOutcomePTEN genePathogenesisPathologic ProcessesPatternPhosphatidylinositolsPhosphoric Monoester HydrolasesPhosphorylationPhosphotransferasesPhysiologicalPhysiological ProcessesPlayPositioning AttributeProcessProductionProtein MicrochipsProteomicsProto-Oncogene Proteins c-aktRaceRecruitment ActivityRegulationResearchResearch Project GrantsRoleSecond Messenger SystemsSignal TransductionTestingTissuesTranslatingWound Healingangiogenesisaxon guidancebasecancer therapycell motilityextracellularfluorescence microscopegenetic regulatory proteingenome-widehigh throughput screeninghuman diseaseinnovationinsightknockout genemigrationneuron developmentpolymerizationprotein protein interactionreceptorrho GTP-Binding Proteinssecond messengertooltripolyphosphatetumor
项目摘要
DESCRIPTION (provided by applicant): Directed cell migration toward chemoattractants, termed chemotaxis, is central to many physiologic events such as axon guidance, wound healing, and tissue morphogenesis. Inappropriate chemotaxis is a key feature of many human diseases, including tumor metastasis, asthma, arthritis, and atherosclerosis. Understanding the mechanisms of chemotaxis is therefore vital for understanding these chemotaxis-related diseases. The long- term goal of our research is to reveal how cells sense their chemical environment and control their migratory behaviors. Using Dictyostelium amoebae as our discovery tool and human cells as our translational tool, we focus on the potent intracellular signal phosphatidylinositol-3,4,5-triphosphate (PIP3), which is produced at the leading edge of cells and reorganizes the actin cytoskeleton. An important, but unanswered, question in the field of chemotaxis is how cells stably maintain the signaling network and remodel the actin cytoskeleton in chemoattractant gradients. To address this fundamental problem, our current studies identified: i) a signaling step that stabilizes directional sensing by persistently orientig Ras activation and PIP3 production, ii) a molecular link that directly binds to both PIP3 and the actin cytoskeleton, and iii) a conserved process in Dictyostelium and humans that turns off PIP3 signaling through translocation of the PIP3 phosphatase PTEN to the plasma membrane. In the next funding period, we propose to study each of these regulatory events and the mechanisms by which chemotactic signaling controls cell migration with high precision. In Aim 1, we will determine how directional sensing is spatially directed toward chemoattractants. We hypothesize that the activation of Ras GTPases and PIP3 production that occurs at the leading portion of cells is regulated by active Rho GTPases located at the rear end through chemical gradients. We will examine how Rho GTPases transmit signal to Ras GTPases. In Aim 2, we will determine how PIP3-binding monomeric myosin I converts the PIP3 signal to the actin cytoskeleton. We will test three models for the function of myosin I in cytoskeletal remodeling: connecting actin filaments to the plasma membrane, directly polymerizing actin, and recruiting actin nucleation factors. In Aim 3, we will delineate how human PTEN is recruited to the plasma membrane. We hypothesize that previously unidentified PTEN receptors in the plasma membrane mediate this process in human cells. We will examine the function of newly identified human PTEN-binding proteins in the localization of PTEN. Moreover, we will further determine the functional importance of the receptors in PIP3 signaling. The outcomes of our research are expected to provide a conceptual breakthrough into two central events in chemotaxis, directional sensing and cytoskeletal rearrangements, and may lead to development of chemotaxis-based treatments for cancer and inflammation.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miho Iijima其他文献
Miho Iijima的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miho Iijima', 18)}}的其他基金
Mechanism and Function of the Supercomplex KARATE in Insulin Signaling
超级复合物空手道在胰岛素信号传导中的机制和功能
- 批准号:
10444290 - 财政年份:2022
- 资助金额:
$ 31.75万 - 项目类别:
Mechanism and Function of the Supercomplex KARATE in Insulin Signaling
超级复合物空手道在胰岛素信号传导中的机制和功能
- 批准号:
10601093 - 财政年份:2022
- 资助金额:
$ 31.75万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
Research Grant














{{item.name}}会员




