A predictive multi-scale model of the immune system: An integrated computational resource for interdisciplinary applications.
免疫系统的预测性多尺度模型:跨学科应用的集成计算资源。
基本信息
- 批准号:9142820
- 负责人:
- 金额:$ 35.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:BehaviorBiochemicalBiologicalBiological ModelsCD4 Positive T LymphocytesCellsCellular Metabolic ProcessCommunicationCommunitiesComplexComputer SimulationDataDecision MakingDiseaseEnvironmentExhibitsGene Expression RegulationImmuneImmune responseImmune systemImmunologyIndividualKnowledgeMediator of activation proteinMemoryModelingMolecularNonlinear DynamicsOrganPatternPharmacotherapyPhenotypePropertyResearchScientistSignal TransductionStimulusSystemT cell differentiationT-Lymphocyteabstractingcell typecomputer frameworkcomputing resourcescytokinedesignextracellularflexibilitymulti-scale modelingnetwork modelsnovelpathogenresponsesimulationvirtual
项目摘要
Abstract
Diseases are often a result of multiple malfunctions in complex, nonlinear network systems that span
multiple layers of biological organization, ranging from molecular to cellular to organ and organismal
levels. The immune system is no exception. Its proper response to foreign stimuli is governed by
network-like interactions among various types of cells and cytokines as their communication
mediators. The complexity at the inter-cellular level of the immune system is further exacerbated by
the similarly complex biological and biochemical networks within each cell (metabolism, gene
regulation, etc.) that are responsible for the dynamics and decision-making at the single-cell level.
Despite substantive research efforts in systems immunology, existing computational models are
limited to network models at individual molecular or cellular scales and/or focus on a single disease
within a small part of the immune system. Herein, we propose to develop a systems-level,
comprehensive, and integrative computational framework for the immune system that is needed to
better understand and predict complex behavior of the immune system in the context of diseases and
associated therapies. This framework will integrate data and knowledge across various levels of
biological organization, capture nonlinear dynamics, and incorporate and facilitate mechanistic
understanding. Such a framework has the potential to enable the interrogation of the dynamics and
emergent properties of complex molecular, cellular, and disease networks that give rise to and
regulate the immune system. This computational resource will provide a broad environment to a range
of scientific communities, including molecular experimentalists, clinicians, translational scientists, and
computational biologists. Furthermore, our group will utilize the comprehensive model to better
understand emergent properties that underlie the immune system, including immune memory,
adaptation, etc. Finally, we will also investigate the capacity, plasticity, and richness of T-cell
differentiation. We hypothesize that additional cytokine profiles defining new CD4+ effector T cells exist
and that the underlying phenotypes exhibit flexibility to provide more dynamics to immune response.
For example, we expect to identify specific combinations of extracellular signals that are able to
stimulate one type of CD4+ T cells to switch to another type, as well as identify novel patterns of
cytokine profiles that may correspond to additional T cell types.
摘要
疾病通常是复杂的非线性网络系统中多重故障的结果,
从分子到细胞再到器官和有机体的多层生物组织
程度.免疫系统也不例外。它对外来刺激的适当反应取决于
各种类型的细胞和细胞因子之间的网络样相互作用作为它们的通信
调解员免疫系统的细胞间水平的复杂性进一步加剧,
每个细胞内类似复杂的生物和生物化学网络(代谢、基因
条例等)负责单细胞水平的动态和决策。
尽管在系统免疫学方面进行了大量的研究工作,但现有的计算模型
仅限于单个分子或细胞尺度的网络模型和/或集中于单一疾病
免疫系统的一小部分。在此,我们建议开发一个系统级,
免疫系统所需的全面、综合的计算框架,
更好地理解和预测免疫系统在疾病背景下的复杂行为,
相关疗法。这一框架将整合各个层面的数据和知识,
生物组织,捕捉非线性动力学,并纳入和促进机械
认识这样一个框架有可能使询问的动态和
复杂的分子、细胞和疾病网络的涌现特性,
调节免疫系统。这种计算资源将提供一个广泛的环境,
科学界,包括分子实验学家,临床医生,转化科学家,
计算生物学家此外,本集团将利用综合模式,
了解免疫系统的基本特性,包括免疫记忆,
最后,我们还将研究T细胞的能力,可塑性和丰富性。
分化我们假设存在定义新的CD 4+效应T细胞的其他细胞因子谱
并且潜在的表型表现出为免疫应答提供更多动力学的灵活性。
例如,我们期望识别出能够与细胞外信号结合的特定组合,
刺激一种类型的CD 4 + T细胞转变为另一种类型,并识别新的CD 4 + T细胞模式
细胞因子谱可以对应于另外的T细胞类型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tomas Helikar其他文献
Tomas Helikar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tomas Helikar', 18)}}的其他基金
Multi-cellular and multi-scale systems modeling to understand the dynamics of the human immune system in interdisciplinary applications
多细胞和多尺度系统建模,以了解跨学科应用中人体免疫系统的动态
- 批准号:
10330815 - 财政年份:2016
- 资助金额:
$ 35.68万 - 项目类别:
Multi-cellular and multi-scale systems modeling to understand the dynamics of the human immune system in interdisciplinary applications
多细胞和多尺度系统建模,以了解跨学科应用中人体免疫系统的动态
- 批准号:
10543785 - 财政年份:2016
- 资助金额:
$ 35.68万 - 项目类别:
Multi-cellular and multi-scale systems modeling to understand the dynamics of the human immune system in interdisciplinary applications
多细胞和多尺度系统建模,以了解跨学科应用中人体免疫系统的动态
- 批准号:
10799092 - 财政年份:2016
- 资助金额:
$ 35.68万 - 项目类别:
Software for collaborative construction, simulation, and analysis of mechanistic computational models of biological systems
用于协同构建、模拟和分析生物系统机械计算模型的软件
- 批准号:
10609352 - 财政年份:2016
- 资助金额:
$ 35.68万 - 项目类别:
相似海外基金
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 35.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analytical validation of a biochemical test for alpha-synuclein aggregates in biological fluids for the diagnosis of Parkinson's Disease
用于诊断帕金森病的生物体液中 α-突触核蛋白聚集体的生化测试的分析验证
- 批准号:
10396678 - 财政年份:2021
- 资助金额:
$ 35.68万 - 项目类别:
Analytical validation of a biochemical test for alpha-synuclein aggregates in biological fluids for the diagnosis of Parkinson's Disease
用于诊断帕金森病的生物体液中 α-突触核蛋白聚集体的生化测试的分析验证
- 批准号:
10361903 - 财政年份:2021
- 资助金额:
$ 35.68万 - 项目类别:
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
- 批准号:
10248476 - 财政年份:2019
- 资助金额:
$ 35.68万 - 项目类别:
Shining a light on dense granules- biochemical, genetic and cell biological investigation of an essential but understudied compartment in malarial -
揭示致密颗粒——对疟疾中一个重要但尚未充分研究的隔室进行生化、遗传和细胞生物学研究——
- 批准号:
2243093 - 财政年份:2019
- 资助金额:
$ 35.68万 - 项目类别:
Studentship
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
- 批准号:
10687856 - 财政年份:2019
- 资助金额:
$ 35.68万 - 项目类别:
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
- 批准号:
10005386 - 财政年份:2019
- 资助金额:
$ 35.68万 - 项目类别:
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
- 批准号:
10480082 - 财政年份:2019
- 资助金额:
$ 35.68万 - 项目类别:
Investigation into the biochemical and biological effects of air pollution on the function of human skin and the intervention of such effects
空气污染对人体皮肤功能的生化、生物学影响及其干预研究
- 批准号:
2314361 - 财政年份:2018
- 资助金额:
$ 35.68万 - 项目类别:
Studentship
Investigation into the biochemical and biological effects of air pollution on the function of human skin and the intervention of such effects
空气污染对人体皮肤功能的生化、生物学影响及其干预研究
- 批准号:
BB/S506837/1 - 财政年份:2018
- 资助金额:
$ 35.68万 - 项目类别:
Training Grant














{{item.name}}会员




