Engineered In Vitro Cochlea for Drug Discovery and Regeneration Studies
用于药物发现和再生研究的体外工程耳蜗
基本信息
- 批准号:9036995
- 负责人:
- 金额:$ 47.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2016-12-01
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAtomic Force MicroscopyAuditoryBasilar MembraneBiochemicalBiologicalBiomimeticsCell Culture TechniquesCell Differentiation processCellsCharacteristicsChemicalsClinicClinicalCochleaCuesDevelopmentDevice or Instrument DevelopmentDevicesDoseDrug Delivery SystemsElementsEngineeringEnvironmentEpithelial CellsEpitheliumExtracellular MatrixFeedbackFutureHair CellsHealthHistocompatibility TestingHumanIn VitroLabyrinthLiquid substanceMechanicsMicrofluidic MicrochipsMicrofluidicsMusNatural regenerationOutcomePatternPhysiologicalPopulationPreclinical Drug EvaluationResearchResearch PersonnelScanning Electron MicroscopySensoryStagingStem cellsStreamStructureSupporting CellSystemTechniquesTestingTissue EngineeringTranslatingValidationWorkaging populationcell typedesigndirect applicationdrug developmentdrug discoverydrug testinghearing impairmentimprovedin vitro Modelinhibitor/antagonistnanopatternnanoscalenotch proteinnovelpreferencepromoterregenerativeresponsescaffoldtool
项目摘要
DESCRIPTION (provided by applicant): Our objective is to create a biomimetic cochlea using inner ear progenitor cells on an engineered scaffold. We aim to replicate aspects of the inner ear sensory epithelium in vitro for use in drug screening and regeneration studies. This novel engineered approach will utilize substrates with mechanical and chemical cues that mimic the natural microenvironment of the basilar membrane extracellular matrix. In addition to recapitulating critical elements of the native environment, we will design a microfluidic device providing precise spatial and dose control over delivery of promoter compounds to direct the differentiation of progenitor cells into inner ear epithelial cells, resulting in hair cells and supporting cells oriented in a pattern mimicking the rows of cells on the basilar membrane. These biomimetic cochleae will be useful as a tool to study regeneration and for drug screening. This device will accelerate drug discovery and facilitate the improved use of stem cells in therapies for hearing loss. Estimates of over 10% of the U.S. population suffer from hearing loss, and this number will continue to rise with an aging population. Although significant strides have been made in understanding the cellular mechanisms of hearing loss and numerous academic and commercial researchers are working to develop treatments, therapies have not translated to the clinic. Stable, well-controlled in vitro models are lacking, and we aim to develo a tissue engineered test platform to accelerate drug discovery and regeneration studies. For testing and validation of our approach, we will optimize an engineered scaffold to encourage attachment, adhesion and differentiation of inner ear progenitor cells. A microfluidic delivery system will expose the cells to alternating regions of LY411575, a Notch inhibitor shown to induce differentiation into hair cells, and soluble jagged1, a supporting cell inducer. We have selected these as exemplary compounds due to their proven response. We will develop a cellular platform for in vitro drug testing, and we anticipate many future uses for the tool for physiological, pathological and regenerative studies. The engineered system will be capable of numerous scaffold alterations to accommodate the preferences of other cell types and enable the delivery of a broad range of compounds with unprecedented spatial, temporal, and dose control using a novel microfluidic approach. Inner ear progenitor cells are targets that have shown promise in treating hearing loss but are difficult to culture and differentiate in a controlld manner, making them the ideal demonstration of the benefits of this approach. We foresee our platform being used by researchers to better understand and treat the causes of hearing loss in humans. Thus the proposed work focuses on mouse progenitor cells, yet has direct application to the treatment of an unmet clinical need in humans. Our approach is unique in that it combines a specifically optimized engineered scaffold and a microfluidic delivery system with cochlear cell culture and manipulation that has never before been realized. An important aspect of our system is that the engineering approaches have been well-studied in other tissue types and are ideal in their tunability and control for application in the auditory field. The engineering development will be staged to allow parallel cellular studies of scaffolds and drug delivery, providing continuous feedback to guide device development. We will evaluate the biomimetic cochleae through various biochemical and physiological outcomes and explore its use as a biological tool for drug discovery and regenerative studies.
描述(由申请者提供):我们的目标是在工程支架上使用内耳祖细胞创建一种仿生耳蜗。我们的目标是在体外复制内耳感觉上皮的某些方面,用于药物筛选和再生研究。这一新的工程方法将利用具有机械和化学线索的底物,模拟基底膜细胞外基质的自然微环境。除了概述自然环境的关键要素外,我们还将设计一种微流控设备,对启动子化合物的传递提供精确的空间和剂量控制,以指导祖细胞向内耳上皮细胞分化,导致毛细胞和支持细胞以模仿基底膜上的细胞排的模式定向。这些仿生耳蜗将作为研究再生和药物筛选的有用工具。该设备将加速药物发现,并促进干细胞在听力损失治疗中的改进使用。据估计,超过10%的美国人口患有听力损失,随着人口老龄化,这一数字将继续上升。尽管在理解听力损失的细胞机制方面取得了重大进展,许多学术和商业研究人员正在努力开发治疗方法,但治疗方法尚未转化为临床。缺乏稳定的、可控的体外模型,我们的目标是开发一个组织工程试验平台,以加速药物发现和再生研究。为了测试和验证我们的方法,我们将优化一种工程支架,以促进内耳祖细胞的附着、黏附和分化。微流控给药系统将使细胞暴露在LY411575和可溶性Jagged1的交替区域中,LY411575是一种Notch抑制剂,被证明可以诱导毛细胞分化,可溶性Jagged1是支持细胞诱导剂。我们选择这些化合物作为示范化合物,因为它们的反应得到了证实。我们将开发一个用于体外药物测试的细胞平台,我们预计该工具将在未来用于生理、病理和再生研究。该工程系统将能够进行大量的支架改变,以适应其他细胞类型的偏好,并使用一种新的微流控方法,以前所未有的空间、时间和剂量控制来传递广泛的化合物。内耳祖细胞是在治疗听力损失方面有希望的靶细胞,但很难以可控的方式培养和分化,使它们成为这种方法好处的理想展示。我们预计我们的平台将被研究人员用来更好地了解和治疗人类听力损失的原因。因此,拟议的工作侧重于小鼠的祖细胞,但直接应用于治疗人类未得到满足的临床需求。我们的方法是独一无二的,因为它结合了专门优化的工程支架和微流体输送系统,以及以前从未实现的耳蜗细胞培养和操作。我们系统的一个重要方面是,工程方法已经在其他组织类型中得到了很好的研究,并且在可调谐性和可控性方面非常理想,适用于听觉领域。工程开发将分阶段进行,以允许对支架和药物输送进行平行的细胞研究,提供持续的反馈以指导设备开发。我们将通过各种生化和生理结果来评估仿生耳蜗,并探索其作为药物发现和再生研究的生物学工具的用途。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin E. Leary Pararas其他文献
Erin E. Leary Pararas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin E. Leary Pararas', 18)}}的其他基金
Engineered In Vitro Cochlea for Drug Discovery and Regeneration Studies
用于药物发现和再生研究的体外工程耳蜗
- 批准号:
8703239 - 财政年份:2014
- 资助金额:
$ 47.39万 - 项目类别:
相似海外基金
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 47.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X007669/1 - 财政年份:2024
- 资助金额:
$ 47.39万 - 项目类别:
Research Grant
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
- 批准号:
24K18450 - 财政年份:2024
- 资助金额:
$ 47.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
- 批准号:
LE240100129 - 财政年份:2024
- 资助金额:
$ 47.39万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
- 批准号:
24K01350 - 财政年份:2024
- 资助金额:
$ 47.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X00760X/1 - 财政年份:2024
- 资助金额:
$ 47.39万 - 项目类别:
Research Grant
Magnetic imaging by the locally induced anomalous Nernst effect using atomic force microscopy
使用原子力显微镜通过局部诱发的异常能斯特效应进行磁成像
- 批准号:
23K04579 - 财政年份:2023
- 资助金额:
$ 47.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Nano Tip Fabrication Technique for Atomic Force Microscopy
原子力显微镜的新型纳米尖端制造技术
- 批准号:
DP230100637 - 财政年份:2023
- 资助金额:
$ 47.39万 - 项目类别:
Discovery Projects
Characterization of super adhesive aerosols on the basis of individual particle analysis using atomic force microscopy
基于原子力显微镜单个颗粒分析的超粘性气溶胶表征
- 批准号:
22KJ1464 - 财政年份:2023
- 资助金额:
$ 47.39万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Using atomic force microscopy to explore the processes and re-organisations that occur during bacterial growth and division and how these are influenc
使用原子力显微镜探索细菌生长和分裂过程中发生的过程和重组以及它们如何影响细菌
- 批准号:
2887441 - 财政年份:2023
- 资助金额:
$ 47.39万 - 项目类别:
Studentship