Metallopolymer and Antibiotic Bioconjugates against Multidrug Resistant Bacteria
针对多重耐药细菌的金属聚合物和抗生素生物共轭物
基本信息
- 批准号:9001064
- 负责人:
- 金额:$ 36.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-11-01 至 2019-10-31
- 项目状态:已结题
- 来源:
- 关键词:AcylationAddressAdsorptionAdvanced DevelopmentAmino AcidsAmoxicillinAmoxicillin-Potassium Clavulanate CombinationAmpicillinAnionsAntibiotic TherapyAntibioticsBacteriaBacterial InfectionsBacterial TypingCefazolinCell Culture TechniquesCell WallCell membraneCell surfaceCellsCessation of lifeChargeClinicalCommunicable DiseasesComplexCytolysisDefense MechanismsDevelopmentDrug resistanceEnzymesEukaryotic CellExcretory functionExhibitsFrequenciesGoalsGram-Positive Bacterial InfectionsHealth Care CostsHealthcareHumanHydrolysisIn VitroInfectionIonsLactamaseLeadMammalian CellMetabolismMetalsMethicillinMethodsMicrobiologyModern MedicineMonobactamsMorbidity - disease rateMulti-Drug ResistanceMusNatural regenerationNosocomial InfectionsPathway interactionsPatientsPenicillin GPenicillin ResistancePolymer ChemistryPolymersPredispositionProductionRecurrenceResearchResidual stateResistance developmentRoleStructureSuperbugSystemTechniquesTestingTissuesToxic effectVancomycinWorkX-Ray Crystallographyabsorptionantimicrobialantimicrobial drugantimicrobial peptidebacterial resistancebasebeta-Lactamasebeta-Lactamscarboxylatecytotoxicdeacylationdesigndisabilityfightingin vivoinnovationkillingsmetal poisoningmethicillin resistant Staphylococcus aureusnovelpathogenpreventpublic health relevancescaffoldstructural biologysuccesssystemic toxicity
项目摘要
DESCRIPTION: Bacterial Infections are an important and emerging global healthcare issue. Β-Lactam antibiotics, one of the most important developments in modern medicine, have saved millions of lives and continue to serve as the major therapy to treat bacterial infections. The highly reactive four- membered β-lactam ring is the key structure for dictating efficacy of this class of antibiotics. Unfortunately, bacteria are rapidly developing resistance to one or more of the most frequently used antibiotics. Β-Lactamase production and excretion is a major defense mechanism employed by several drug-resistant bacterial pathogens. For example, nearly 30% of hospital- acquired infections are identified as methicillin-resistant Staphylococcus aureus (MRSA) strains that are resistant to penicillin, methicillin and many other β-lactam antibiotics, leading to serious infection problems for patients. Currently, vancomycin and amoxicillin/clavulanic acid are among the most commonly used antibiotics for the treatment of Gram-positive bacterial infections. Although these antibiotics are among the strongest of their classes, the high frequency use has resulted in their decreased susceptibility. Efficient antibiotics and/or antimicrobial agents are in high demand, but have limited success in fighting bacterial resistance. We discover a class of charged metallopolymers that exhibits synergistic effects against multidrug resistant bacteria by effectively lysing bacterial cells and efficiently disarming activity of β-lactamases. Various conventional β-lactam antibiotics, including penicillin-G, amoxicillin, ampicillin and cefazolin, are protected from β-lactamase hydrolysis via
the formation of unique ion-pairs between their carboxylate anions and cationic metallopolymers. There are at least three innovations involved in this project: (1) our approaches effectively prevent bacterial resistance by protecting and reinstating antibiotics; (2) more importantly our metallopolymer platforms eliminate the possibility of recurrence of bacterial resistance via disarming β- lactamases and disrupting cell membranes; (3) these metallopolymers are non- or minimally cytotoxic for mammalian cells. Our research and discoveries could provide a new pathway to designing macromolecular scaffolds to regenerate vitality of conventional antibiotics to kill multidrug resistant bacteria and superbugs.
描述:细菌感染是一个重要且新兴的全球医疗保健问题。 B-LACTAM抗生素是现代医学中最重要的发展之一,已挽救了数百万的生命,并继续作为治疗细菌感染的主要疗法。高反应性的四元β-内酰胺环是决定这类抗生素效率的关键结构。不幸的是,细菌正在迅速发展对一种或多种最常用的抗生素的抗性。 B-内酰胺的产量和Extreme是多种耐药细菌病原体采用的主要防御机制。例如,几乎30%的医院获得感染被确定为耐甲氧西林金黄色葡萄球菌(MRSA)菌株,这些菌株对青霉素,甲氧西林和许多其他β-内酰胺抗生素具有抗性,导致患者严重感染问题。目前,万古霉素和阿莫西林/克拉素酸是治疗革兰氏阳性细菌感染的最常用抗生素之一。尽管这些抗生素是其类别的强项,但高频使用导致其易感性下降。有效的抗生素和/或抗菌剂的需求量很高,但在抵抗细菌耐药性方面的成功有限。我们发现了一类带电的金属聚合物,该金属聚合物通过有效裂解细菌细胞并有效解除β-内酰胺酶的活性来表现出针对多药抗性细菌的协同作用。各种常规的β-内酰胺抗生素,包括青霉素-G,阿莫西林,阿莫西林和头孢唑素,都可以通过β-内酰胺酶水解保护
它们的羧酸盐阴离子和阳离子金属聚合物之间的独特离子对形成。该项目至少涉及三项创新:(1)我们的方法通过保护和恢复抗生素有效地防止细菌抗性; (2)更重要的是,我们的金属聚合物平台消除了通过解除β-乳糖苷酶并破坏细胞膜的抗药性复发的可能性; (3)这些金属聚合物对于哺乳动物细胞是非或微小的细胞毒性。我们的研究和发现可以为设计大分子支架的新途径提供新的途径,以再生常规抗生素的生命力,以杀死多药耐药细菌和超级细菌。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chuanbing Tang其他文献
Chuanbing Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chuanbing Tang', 18)}}的其他基金
Control of Facial Amphiphilicity to Tune Macromolecular Interactions with Bacteria
控制面部两亲性以调节大分子与细菌的相互作用
- 批准号:
10062831 - 财政年份:2019
- 资助金额:
$ 36.16万 - 项目类别:
Control of Facial Amphiphilicity to Tune Macromolecular Interactions with Bacteria
控制面部两亲性以调节大分子与细菌的相互作用
- 批准号:
9886334 - 财政年份:2019
- 资助金额:
$ 36.16万 - 项目类别:
Control of Facial Amphiphilicity to Tune Macromolecular Interactions with Bacteria
控制面部两亲性以调节大分子与细菌的相互作用
- 批准号:
10304183 - 财政年份:2019
- 资助金额:
$ 36.16万 - 项目类别:
Control of Facial Amphiphilicity to Tune Macromolecular Interactions with Bacteria
控制面部两亲性以调节大分子与细菌的相互作用
- 批准号:
10530614 - 财政年份:2019
- 资助金额:
$ 36.16万 - 项目类别:
Metallopolymer and Antibiotic Bioconjugates against Multidrug Resistant Bacteria
针对多重耐药细菌的金属聚合物和抗生素生物共轭物
- 批准号:
9173018 - 财政年份:2015
- 资助金额:
$ 36.16万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the dynamical and structural molecular factors at the origin of non-enzymatic protein-protein and protein-DNA cross-links
阐明非酶蛋白质-蛋白质和蛋白质-DNA 交联起源的动力学和结构分子因素
- 批准号:
10709399 - 财政年份:2023
- 资助金额:
$ 36.16万 - 项目类别:
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 36.16万 - 项目类别:
Selective C(sp3)–H Functionalization Enabled by Metal-Organic Framework Catalysis
金属有机框架催化实现选择性 C(sp3)–H 官能化
- 批准号:
10679785 - 财政年份:2023
- 资助金额:
$ 36.16万 - 项目类别:
Non-coating anti-microbial, anti-host protein deposition, anti-inflammatory urinary catheter
无涂层抗菌、抗宿主蛋白沉积、抗炎导尿管
- 批准号:
10697567 - 财政年份:2023
- 资助金额:
$ 36.16万 - 项目类别:
Evaluation of a Next Generation SchistoShield Vaccine
下一代 SchistoShield 疫苗的评估
- 批准号:
10761529 - 财政年份:2023
- 资助金额:
$ 36.16万 - 项目类别: