A Postural Control Paradigm for EMG Control of Advanced Prosthetic Hands
先进假手肌电图控制的姿势控制范例
基本信息
- 批准号:8825956
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAmputationBedsBionicsClinicalDataDimensionsFingersFreedomFrustrationGenerationsGermanyGoalsHandHealthHealthcareHouseholdHumanJointsLaboratoriesLimb structureMapsMarketingMeasuresMethodsMuscleMusculoskeletal EquilibriumNeurosciencesPattern RecognitionPersonsPhysiologic pulsePosturePrincipal Component AnalysisProsthesisPsyche structureRunningSignal TransductionSiteSystemTechniquesTestingThumb structureTimeTouch sensationUnited KingdomUpper ExtremityVeteransWeightWorkbaseclinical practicegrasplimb amputationnovelprosthetic handresidual limbsensorsuccesstooltwo-dimensional
项目摘要
DESCRIPTION (provided by applicant):
In this project we will explore the use of a novel prosthesis controller based on the principle of Principal Component Analysis to enable seamless posture selection in high degree-of-freedom (DOF) prosthetic hands. The goal of this project is to develop a multi-degree of freedom (DOF) hand prosthesis posture controller that uses myoelectric signals (EMG) as control inputs and which has been dimensionally optimized using principal component analysis (PCA). Currently available multi-DOF hand prostheses cannot be fully utilized because there are fewer control inputs than the number of DOFs to be controlled (i.e. an underactuated system). Based on work from the neuroscience literature1 it has been shown that grasping is a 'low dimensional' task. This work used PCA to quantify the principal components (number of dimensions) involved in grasping. It was found that grasping tasks could be well described by the first two principal components. Two principal components implies that the posture of a multi-DOF hand, while grasping, can be controlled using only 2 degrees-of-control. This is an encouraging finding since current clinical upper limb prosthetic practice indicates only 3 or 4 independent myoelectric sites
can be located on the residual limb of a typical person with a transradial amputation. We propose to explore the merits of a hand posture controller based on the first two principal components described by Santello et al.1 and driven using 2, 3 or 4 myoelectric sites. Santello et al. measured 15 joint angles in the hand of the subjects while 'grasping' 57 household objects. The resulting analysis showed a high amount of covariance between the joints while grasping different objects. A principal component analysis showed that the first two principal components accounted for 84% of the variance. This result suggests that, for grasping tasks, control of our 22 DOF natural hand reduces to a largely 2 dimensional control problem. Applying this finding to the control of multi-articulated prosthetic hands means we can use 2-4 myoelectrodes yet still be able to seamlessly move between postures in a multi-DOF hand. We will develop a control algorithm that will map the myoelectric signals to weighted combinations of Santello et al.s first two principal components to yield a desired posture. All functional grasp as defined by Keller et al., (1947) are achievable by varying the degree to which either principal component is weighted. This controller will direct high-dimension grasps with only 3 or 4 myoelectric sites and therefore control a multi-degree of freedom prosthetic hand using currently available clinical practices. This is of relevance because there are a number of new commercially available hands coming onto the market with articulated fingers and multi- positional thumbs - but with no way to select between grasps in a easy manner. We will demonstrate an EMG- driven PCA-based controller by having it drive a Bebionic Hand2 which has been modified to have a two degree-of-freedom thumb - converting it into a 6 DOF hand. 1 Santello, M., Flanders, M., and Soechting J.F., (1998): Postural hand synergies for tool use. J. Neuroscience, 18(23)10105-10115. 2 RSLSteeper, Rochester, United Kingdom.
描述(由申请人提供):
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD Fergus ffrench WEIR其他文献
RICHARD Fergus ffrench WEIR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD Fergus ffrench WEIR', 18)}}的其他基金
The Point Digit: A ratcheting prosthetic finger using advanced rapid manufacturing technology
The Point Digit:采用先进快速制造技术的棘轮假肢手指
- 批准号:
10028272 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Power Hungry: Fuel Cells Harvesting Biofluids for Renewable Power of Wearable Medical Devices
电力需求旺盛:燃料电池收集生物流体,为可穿戴医疗设备提供可再生能源
- 批准号:
10237207 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Artificial Digit Replacements for Women Veterans with Individual Digit Loss
为个别手指缺失的女性退伍军人进行人工手指替换
- 批准号:
10426913 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Artificial Digit Replacements for Women Veterans with Individual Digit Loss
为个别手指缺失的女性退伍军人进行人工手指替换
- 批准号:
10610390 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Artificial Digit Replacements for Women Veterans with Individual Digit Loss
为个别手指缺失的女性退伍军人进行人工手指替换
- 批准号:
10174849 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Development of a Bidirectional Optogenetic Minimally Invasive Peripheral Nerve Interface with Single Axon Read-in & Read-out Specificity
单轴突读入双向光遗传学微创周围神经接口的开发
- 批准号:
9535582 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Development of a Bidirectional Optogenetic Minimally Invasive Peripheral Nerve Interface with Single Axon Read-in & Read-out Specificity
单轴突读入双向光遗传学微创周围神经接口的开发
- 批准号:
9481458 - 财政年份:2016
- 资助金额:
-- - 项目类别:
A Postural Control Paradigm for EMG Control of Advanced Prosthetic Hands
先进假手肌电图控制的姿势控制范例
- 批准号:
9000726 - 财政年份:2014
- 资助金额:
-- - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




