Power Hungry: Fuel Cells Harvesting Biofluids for Renewable Power of Wearable Medical Devices
电力需求旺盛:燃料电池收集生物流体,为可穿戴医疗设备提供可再生能源
基本信息
- 批准号:10237207
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:AcidsAddressAnimal ExperimentationAnionsAnodesArchitectureAreaArteriovenous fistulaAwardBaclofenBloodBlood GlucoseBlood VesselsBlood flowBrainCathodesCellsClinicalCollaborationsDevelopmentDevice or Instrument DevelopmentDevicesDialysis patientsDialysis procedureDropsElectricityElectrodesElectrolytesElectronicsEnsureEquipmentForearmFormulationFutureGlucoseGoalsGoretexHarvestHourHumanImplantInformation DisseminationInstitutesJournalsLabelLimb ProsthesisMechanicsMedicalMedical DeviceMembraneMetalsMethodsMiniaturizationMissionNatureOutputPacemakersPatientsPeer ReviewPhysiologicalPolymersPower SourcesProductionPropertyProsthesisProtonsPumpRegulationResearchResearch Peer ReviewRouteShapesShunt DeviceSolidSourceStreamSurfaceSurgeonSystemTechnical ExpertiseTechnologyTimeLineUpper ExtremityVascular blood supplyVenousVisionWeightWireless TechnologyWorkalkalinitybasebiomaterial compatibilitycatalystdeep brain stimulatordensitydesignenergy densityexperienceexperimental studyglucose transportimplanted sensorimprovedin vivolight weightmaterials scienceminiaturizenew technologynoveloxidationprototypereaction raterehabilitation researchrelating to nervous systemstandard of caresugarsymposiumtechnology validationwarfighterwearable devicewearable sensor technologywound
项目摘要
Our ultimate goal is to create an alkaline fuel cell that uses blood sugars as a renewable power source for
implantable and wearable medical devices. We believe the components and technologies needed to create such
a device have come of age and that an opportunity exists to develop a system that integrates these components
to produce a clinically viable system in terms of size, power, and efficiency. If successful, this will be a completely
novel technology using blood sugar as a fuel source for an alkaline fuel cell. A fuel cell of this nature would
enable long-term, renewable power for implanted and/or wearable medical devices. Circuits with super-
capacitors or rechargeable batteries will help with power management4. In its final formulation, it is possible to
envision a small spiral wound membrane-based fuel cell packaged into a device the size of three AA batteries
that uses body-harvested sugars to produce electrical power for medical devices.
For the purpose of this SPiRE development project as a first step we propose to develop an external glucose-
based fuel cell as a technology demonstrator. Such a system might have advantages over standard battery
technology in terms of energy density, size, and weight but the real goal is to allow us to research and address
the pitfalls surrounding implementation of this technology and to enable us to have discussions with clinicians,
such as vascular surgeons and the like, on how to best advance and deploy this technology in people. For this
SPiRE award. We will:
• Create a bench-top fuel cell using off-the-shelf materials, an anion exchange membrane, and electronics.
• Develop an intrinsic fuel cell architecture using glucose as a fuel source as a proof-of-concept.
The methods of this project build upon existing technical expertise, collaborations, and equipment already
used by Dr. Weir’s and Dr. Pellegrino’s research groups. We will implement an alkaline electrolyte rather than
the typical acid electrolyte. The alkaline electrolyte in our experiment is a solid polymer electrolyte known as an
anion exchange membrane (AEM). Anion exchange membranes (AEM) offer benefits over traditional proton
exchange membranes (PEM). Anion exchange membranes do not require noble metal catalysts and have low
fuel crossover. AEM’s also have been shown to have high power density when compared to proton exchange
membrane (PEM) glucose fuel cells.
In our study, we will use a highly ionically conductive AEM developed and provided by Dr. Chulsung Bae of
Rensselaer Polytechnic Institute (RPI). This state-of-the-art membrane will reduce the need for a basic glucose
media enabling in-vivo or ex-vivo bio-medical applications. Our membrane electrode assembly, consisting of the
anode, cathode, and AEM, will be placed in a standard 10 cm2 fuel cell stack. We completely acknowledge that
the route to fully implantable fuel cells must pass through other hurdles, such as biocompatibility; nonetheless,
the current materials advances allow us to operate abiotic catalytic oxidation of glucose with locally high pH
conditions. We will explore glucose concentrations which mimic the concentration in blood in anticipation of
future development, and we will develop a prototype standalone appropriately packaged external fuel cell in a
shape, size, and weight suitable for use in a trans-radial prosthesis. No human and/or animal research will take
place at this early stage of development.
Our team has experience across all aspects of the project. Dr. Pellegrino’s expertise in material science and
membranes ensures the design of the fuel cell will improve upon prior technology. Dr. Segil’s electromechanical
design experience in upper limb prosthetic components will inform the miniaturization and packaging of the
device. Dr. Weir’s prior work on implantable sensors, wireless power technology, and medical device
development will facilitate the design of the power stabilization electronics.
1
我们的最终目标是创建一个使用血糖作为可再生能源的合金燃料电池
可植入和可穿戴的医疗设备。我们相信创建这样的组件和技术
设备已经成熟,并且存在一个机会开发一个集成这些组件的系统
在大小,功率和效率方面产生临床上可行的系统。如果成功,这将是一个完全
使用血糖作为合金燃料电池的燃料来源的新技术。这种性质的燃料电池将
为植入和/或可穿戴医疗设备启用长期可再生能源。带有超级的电路
电容器或可充电电池将有助于电源管理4。在最终公式中,有可能
设想包装到三个AA电池大小的设备中的一个小螺旋伤口膜的燃料电池
使用人体收获的糖来为医疗设备产生电力。
出于该尖峰开发项目的目的,我们建议开发外部葡萄糖 -
基于燃料电池作为技术演示器。这样的系统可能比标准电池具有优势
在能量密度,大小和重量方面的技术,但真正的目标是让我们研究和解决
围绕该技术实施的陷阱,使我们能够与临床医生进行讨论,
例如血管外科医师等,如何最好地推进和将这项技术部署在人们中。为了这
尖顶奖。我们将:
•使用现成的材料,阴离子交换膜和电子产品创建台式燃料电池。
•使用葡萄糖作为燃料来源作为概念验证,开发固有的燃料电池结构。
该项目的方法基于现有的技术专长,协作和设备
由Weir博士和Pellegrino博士的研究小组使用。我们将实施酒精电解质而不是
典型的酸电解质。我们实验中的酒精电解质是一种固体聚合物电解质,称为
阴离子交换膜(AEM)。阴离子交换膜(AEM)提供了比传统质子的好处
交换膜(PEM)。阴离子交换膜不需要高贵的金属催化剂,并且有低
燃油跨界。与质子交换相比,AEM的功率密度也很高
膜(PEM)葡萄糖燃料电池。
在我们的研究中,我们将使用由Chulsung Bae博士开发和提供的高度引导的AEM
伦斯勒理工学院(RPI)。这种最先进的膜将减少对基本葡萄糖的需求
媒体启用了体内或前体生物医学应用。我们的膜电极组件,由
阳极,阴极和AEM将放置在标准的10 CM2燃料电池堆中。我们完全承认
完全植入燃料电池的途径必须穿过其他障碍,例如生物相容性。尽管如此,
当前材料的发展使我们能够用局部pH值进行葡萄糖的非生物催化氧化
状况。我们将探索模仿血液浓度的葡萄糖浓度
未来的开发,我们将在A中开发一个原型独立包装的外部燃料电池
形状,大小和重量,适合于跨性别假体。没有人类和/或动物研究
位于发展的早期阶段。
我们的团队在项目的各个方面都有经验。 Pellegrino博士在材料科学方面的专业知识和
膜可确保燃料电池的设计将在先前的技术中改善。塞吉尔博士的机电
上肢假体成分中的设计经验将为您的小型化和包装提供信息
设备。 Weir博士先前在植入传感器,无线电源技术和医疗设备方面的工作
开发将促进电源稳定电子设备的设计。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD Fergus ffrench WEIR其他文献
RICHARD Fergus ffrench WEIR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD Fergus ffrench WEIR', 18)}}的其他基金
The Point Digit: A ratcheting prosthetic finger using advanced rapid manufacturing technology
The Point Digit:采用先进快速制造技术的棘轮假肢手指
- 批准号:
10028272 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Artificial Digit Replacements for Women Veterans with Individual Digit Loss
为个别手指缺失的女性退伍军人进行人工手指替换
- 批准号:
10426913 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Artificial Digit Replacements for Women Veterans with Individual Digit Loss
为个别手指缺失的女性退伍军人进行人工手指替换
- 批准号:
10610390 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Artificial Digit Replacements for Women Veterans with Individual Digit Loss
为个别手指缺失的女性退伍军人进行人工手指替换
- 批准号:
10174849 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Development of a Bidirectional Optogenetic Minimally Invasive Peripheral Nerve Interface with Single Axon Read-in & Read-out Specificity
单轴突读入双向光遗传学微创周围神经接口的开发
- 批准号:
9535582 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Development of a Bidirectional Optogenetic Minimally Invasive Peripheral Nerve Interface with Single Axon Read-in & Read-out Specificity
单轴突读入双向光遗传学微创周围神经接口的开发
- 批准号:
9481458 - 财政年份:2016
- 资助金额:
-- - 项目类别:
A Postural Control Paradigm for EMG Control of Advanced Prosthetic Hands
先进假手肌电图控制的姿势控制范例
- 批准号:
9000726 - 财政年份:2014
- 资助金额:
-- - 项目类别:
A Postural Control Paradigm for EMG Control of Advanced Prosthetic Hands
先进假手肌电图控制的姿势控制范例
- 批准号:
8825956 - 财政年份:2014
- 资助金额:
-- - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Unravelling highly pathogenic influenza virus emergence
揭开高致病性流感病毒出现的谜团
- 批准号:
10718091 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Ultra-processed food consumption, gut microbiota, and glucose homeostasis in mid-life adults
中年成年人的超加工食品消费、肠道微生物群和葡萄糖稳态
- 批准号:
10618337 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Ultra-processed food consumption, gut microbiota, and glucose homeostasis in mid-life adults
中年成年人的超加工食品消费、肠道微生物群和葡萄糖稳态
- 批准号:
10431451 - 财政年份:2022
- 资助金额:
-- - 项目类别: