Ribosomes and Growth Regulation
核糖体和生长调节
基本信息
- 批准号:9160502
- 负责人:
- 金额:$ 30.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-08 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnabolismAneuploid CellsAnimalsCancer EtiologyCell CycleCell ProliferationCell SizeCell SurvivalCellsChildhoodCirrhosisDNA SequenceDefectDevelopmentDiamondDiamond-Blackfan anemiaDiseaseDrosophila genusEssential GenesExhibitsFeedbackGene DosageGene ExpressionGene TargetingGene-ModifiedGenesGeneticGenetic TranscriptionGenetic studyGenomeGenotypeGrowthGrowth and Development functionHeart DiseasesHeart HypertrophyHeterozygoteHistocompatibility TestingHumanImmunohistochemistryInheritedLabelLeadLongevityMaintenanceMalignant NeoplasmsMandibulofacial DysostosisMapsMicroscopyModelingMolecular GeneticsMutationNeurofibromin 2North American IndiansNorthern BlottingNucleic Acid Regulatory SequencesOrganOrganismPathway interactionsProcessProtein BiosynthesisRegulationResistanceResolutionRibosomal ProteinsRibosomal RNARibosomesRoleSpleenSyndromeTestingTissuesTranslationsTransmission Electron MicroscopybZIP Domainbasecell fixingcell growthcell typeimaginal discimprovedirradiationloss of functionmacromoleculemutantnovelnovel therapeuticsoverexpressionprogramsreproductivetranscription factortranscriptometranscriptome sequencing
项目摘要
Ribosomes are responsible for protein synthesis and therefore necessary for the growth
of all organs, in both normal development and in disease conditions such as cancer or
cardiac hypertrophy. A number of congenital conditions, collectively termed
ribosomopathies, result from defects in components of the ribosome or affect its
biosynthesis. It is unclear why ribosomopathies have such distinct effects from one
another, and it is unclear why mutations in ribosomal genes can cause cancer, since
they are required for growth. Reducing the number of ribosomal genes reduces growth
rate but surprisingly this has been found to be mainly due to the activation of a new,
previously unstudied gene that is believed to encode a transcription factor. To
understand how growth is affected, the target genes of this new transcription factor will
be identified using a combination of genetic and molecular genetic studies that are
possible in the fruitfly. To understand how the new pathway responds to ribosomal
protein gene copy number, the DNA sequences that react to such changes will be
mapped and characterized. The effect of ribosomal protein gene copy changes on the
number of ribosomes, and on the accumulation of their assembly intermediates will be
determined to indicate how gene expression is most likely affected. To explore what
advantage might accrue from a pathway that slows growth and development, the
implications for cell competition, the maintenance of cell size, and for organismal
longevity, resistance to genome damage, and body symmetry will be assessed. Given
that ribosomes are essential components of all cells, the results of these basic studies
are likely to improve understanding of growth in all organs, and diseases that affect
growth including cancer, heart disease, and ribosomopathies.
核糖体负责蛋白质合成,因此是生长所必需的
所有器官,无论是在正常发育还是在癌症或癌症等疾病状态下
心脏肥大。许多先天性疾病统称为
核糖体病,由核糖体成分缺陷引起或影响其
生物合成。目前尚不清楚为什么核糖体病与核糖体病具有如此不同的影响
另一个,目前还不清楚为什么核糖体基因突变会导致癌症,因为
它们是成长所必需的。减少核糖体基因的数量会降低生长速度
但令人惊讶的是,这主要是由于新的激活,
以前未被研究过的基因,被认为编码转录因子。到
了解生长如何受到影响,这种新转录因子的靶基因将
通过结合遗传和分子遗传学研究来确定
在果蝇中是可能的。了解新途径如何响应核糖体
蛋白质基因拷贝数,对这种变化做出反应的DNA序列将是
绘制并表征。核糖体蛋白基因拷贝变化对
核糖体的数量及其组装中间体的积累将是
确定表明基因表达最有可能如何受到影响。探索什么
优势可能会从减缓增长和发展的途径中产生,
对细胞竞争、细胞大小的维持以及有机体的影响
将评估寿命、对基因组损伤的抵抗力和身体对称性。给定
核糖体是所有细胞的重要组成部分,这些基础研究的结果
可能会增进对所有器官生长以及影响疾病的了解
生长,包括癌症、心脏病和核糖病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas E Baker其他文献
Nicholas E Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas E Baker', 18)}}的其他基金
Identifying mechanisms that detect and eliminate aneuploid cells
识别检测和消除非整倍体细胞的机制
- 批准号:
10320458 - 财政年份:2021
- 资助金额:
$ 30.9万 - 项目类别:
Advanced Confocal Microscope in a multi-user facility
多用户设施中的先进共焦显微镜
- 批准号:
9274630 - 财政年份:2017
- 资助金额:
$ 30.9万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 30.9万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 30.9万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 30.9万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 30.9万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 30.9万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 30.9万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 30.9万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 30.9万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 30.9万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 30.9万 - 项目类别:
Discovery Early Career Researcher Award