Mined-knowledge driven software quality monitoring and diagnosis environment

挖掘知识驱动的软件质量监控和诊断环境

基本信息

  • 批准号:
    293250-2007
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2007
  • 资助国家:
    加拿大
  • 起止时间:
    2007-01-01 至 2008-12-31
  • 项目状态:
    已结题

项目摘要

This research aims at devising a decision support environment for software developers and maintainers in an organization, in order to enable them to monitor the structural and behavioral aspects of the system and to provide recommendations, alerts, and warnings with regard to maintaining specific software qualities. The proposed environment takes advantage of modern technologies to specify and synthesize customizable decision-flow diagrams as guideline models that encode the best practices developed in the organization or  established in the software maintenance literature. The guideline model is then executed to interactively direct the flow of decision from the root node of the decision-flow diagram to a leaf node, where a decision is made and the user is notified.At each node of the decision-flow diagram, various types of information can be supplied to the guideline model. These types of information are categorized as either "system information", including system's static, dynamic, or design related data and relations, or as "mined knowledge", in the form of patterns and trends, including: association rules, execution trace patterns, generalizations, and clusters, that are extracted from the "system information" by the means of data mining algorithms. The guideline model then providesdifferent types of recommendations or alerts, as well as a list of possible next steps in the decision-flow diagram for the user to choose from. The guideline models can specify different software maintenance activities such as: corrective, perfective, adaptive, or preventive operations that ensure a healthy software system asset for the respective organization throughout its development and evolution stages. The key characteristics of the proposed environment include the incorporation of mined knowledge that ensures sophistication of the approach, as well as customization and ease of use that ensures adoption by the software maintainers of the organizations in different application domains.
本研究旨在为组织中的软件开发人员和维护人员设计一个决策支持环境,以便使他们能够监视系统的结构和行为方面,并提供关于维护特定软件质量的建议、警报和警告。所建议的环境利用现代技术来指定和综合可定制的决策流图,作为指导模型,对组织中开发的或在软件维护文献中建立的最佳实践进行编码。然后执行指南模型,以交互方式将决策流从决策流程图的根节点引导到叶节点,在叶节点做出决策并通知用户。在决策流程图的每个节点上,可以向指南模型提供各种类型的信息。这些类型的信息被分类为“系统信息”,包括系统的静态、动态或设计相关的数据和关系,或者作为“挖掘的知识”,以模式和趋势的形式,包括:关联规则、执行跟踪模式、概括和聚类,通过数据挖掘算法从“系统信息”中提取。然后,指南模型提供不同类型的建议或警报,以及决策流程图中可能的后续步骤列表,供用户选择。指导模型可以指定不同的软件维护活动,例如:纠正性、完善性、适应性或预防性操作,以确保各个组织在其整个开发和演变阶段拥有健康的软件系统资产。所提议的环境的关键特征包括:结合了挖掘的知识,确保了方法的复杂性;以及自定义和易用性,确保了不同应用程序领域中组织的软件维护人员的采用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sartipi, Kamran其他文献

OpenID Connect as a security service in cloud-based medical imaging systems
  • DOI:
    10.1117/1.jmi.3.2.026501
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ma, Weina;Sartipi, Kamran;Bak, Peter
  • 通讯作者:
    Bak, Peter

Sartipi, Kamran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sartipi, Kamran', 18)}}的其他基金

Intelligent and Mined-knowledge Driven Consultant Services for User Behavior Recovery in Large Distributed Systems
大型分布式系统中用户行为恢复的智能和挖掘知识驱动的咨询服务
  • 批准号:
    RGPIN-2014-06402
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent and Mined-knowledge Driven Consultant Services for User Behavior Recovery in Large Distributed Systems
大型分布式系统中用户行为恢复的智能和挖掘知识驱动的咨询服务
  • 批准号:
    RGPIN-2014-06402
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent and Mined-knowledge Driven Consultant Services for User Behavior Recovery in Large Distributed Systems
大型分布式系统中用户行为恢复的智能和挖掘知识驱动的咨询服务
  • 批准号:
    RGPIN-2014-06402
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent and Mined-knowledge Driven Consultant Services for User Behavior Recovery in Large Distributed Systems
大型分布式系统中用户行为恢复的智能和挖掘知识驱动的咨询服务
  • 批准号:
    RGPIN-2014-06402
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent and Mined-knowledge Driven Consultant Services for User Behavior Recovery in Large Distributed Systems
大型分布式系统中用户行为恢复的智能和挖掘知识驱动的咨询服务
  • 批准号:
    RGPIN-2014-06402
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent and Mined-knowledge Driven Consultant Services for User Behavior Recovery in Large Distributed Systems
大型分布式系统中用户行为恢复的智能和挖掘知识驱动的咨询服务
  • 批准号:
    RGPIN-2014-06402
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
"Environment for Smart, Customizable, and Collaborative Service Analysis and Integration"
“智能、可定制、协作的服务分析和集成环境”
  • 批准号:
    293250-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Mined-knowledge driven software quality monitoring and diagnosis environment
挖掘知识驱动的软件质量监控和诊断环境
  • 批准号:
    293250-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Mined-knowledge driven software quality monitoring and diagnosis environment
挖掘知识驱动的软件质量监控和诊断环境
  • 批准号:
    293250-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Mined-knowledge driven software quality monitoring and diagnosis environment
挖掘知识驱动的软件质量监控和诊断环境
  • 批准号:
    293250-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

KEEN - Knowledge-driven Explainable Misinformation Detection for Trustworthy Computational Social Systems
KEEN - 知识驱动的可解释错误信息检测,用于可信赖的计算社会系统
  • 批准号:
    EP/Y015894/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Fellowship
Real-time inversion using self-explainable deep learning driven by expert knowledge
使用由专家知识驱动的可自我解释的深度学习进行实时反演
  • 批准号:
    EP/Z000653/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
A PROGRESS-Driven Approach to Cognitive Outcomes after Traumatic Brain Injury: Advancing Equity, Diversity, and Inclusion through Knowledge Synthesis and Mobilization
创伤性脑损伤后认知结果的进步驱动方法:通过知识合成和动员促进公平、多样性和包容性
  • 批准号:
    492338
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Operating Grants
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
  • 批准号:
    2324742
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
CAREER: Timeliness as a Controllable Dimension via Knowledge-driven System Management
职业:通过知识驱动的系统管理将及时性作为可控维度
  • 批准号:
    2238476
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
HERV proteogenomics of narcotic-driven HIV latency
麻醉药驱动的 HIV 潜伏期的 HERV 蛋白质基因组学
  • 批准号:
    10675341
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Structure and Function of the SHOC2 Holophosphatase Complex in RAS-driven Cancer
SHOC2 全磷酸酶复合物在 RAS 驱动的癌症中的结构和功能
  • 批准号:
    10662750
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Determinants of immunotherapy response in NASH-Hepatocellular carcinoma
NASH-肝细胞癌免疫治疗反应的决定因素
  • 批准号:
    10735947
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
  • 批准号:
    10727356
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
The role of stress, social support, and brain function on alcohol misuse in women
压力、社会支持和大脑功能对女性酗酒的影响
  • 批准号:
    10676428
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了