Continuous and discrete Gabor and wavelet analysis
连续和离散 Gabor 和小波分析
基本信息
- 批准号:36534-2008
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2008
- 资助国家:加拿大
- 起止时间:2008-01-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The present proposal involves different areas of modern Fourier analysis such as the theory of wavelets, Gabor systems and time -frequency analysis. One important component of the research effort will involve the theory of both irregular Gabor and wavelet systems. A Gabor systems is a collection of functions used to "analyse" a given signal. This collection is generated by shifts and modulations of a certain function called the "window". The system is called "regular" if these modulations and shifts are regularly spaced in the time-frequency and "irregular" if they are not. While the theory of regular Gabor systems is well understood at the present, the same cannot be said for irregular systems. The applicant proposes to develop a better understanding of these irregular systems and improves on recent work he and others have done in this area. One of the main advantages of our proposed approach to irregular Gabor systems is that, instead of fixing, a priori, the set of sampling points in the time-frequency space and then trying to find windows that can be use effectively with the given sampling set, we fix the window (or pair of dual windows) and then try to find a suitable sampling set in the time-frequency space. Wavelet systems can also be generated by a single function, but through the use of shifts and dilations instead, and a notion of regular and irregular wavelet system can also be defined. Again, the theory of regular wavelet systems is fairly well developed at this point while that of irregular wavelet system is still in its infancy. We propose to investigate whether certain recent results of the applicant concerning irregular Gabor systems can be extended to irregular wavelet systems. Beside the theory of irregular Gabor and wavelet systems, this proposal also includes other topics such as the study of so-called density conditions for subspace Gabor frames and the study of wavelet sets constructed using self-affine multi-tiles.
本建议涉及现代傅立叶分析的不同领域,如小波理论,Gabor系统和时频分析。 研究工作的一个重要组成部分将涉及不规则Gabor和小波系统的理论。Gabor系统是用于“分析”给定信号的函数的集合。这个集合是由称为“窗口”的特定函数的移位和调制生成的。 如果这些调制和移位在时间-频率上规则地间隔开,则系统被称为“规则的”,如果它们不是,则系统被称为“不规则的”。虽然正规的伽柏系统的理论是很好的理解,目前,同样不能说不规则的系统。申请人建议更好地了解这些非正规系统,并改进他和其他人最近在这一领域所做的工作。 我们所提出的方法的主要优点之一是,而不是固定,先验,在时间-频率空间中的采样点的集合,然后试图找到可以有效地使用给定的采样集的窗口,我们固定的窗口(或双窗口对),然后试图找到一个合适的采样集在时间-频率空间。 小波系统也可以由一个单一的功能,但通过使用移位和伸缩,而不是,也可以定义一个规则和不规则小波系统的概念。 同样,在这一点上,规则小波系统的理论是相当发达的,而不规则小波系统仍处于起步阶段。我们建议调查申请人关于不规则Gabor系统的某些最近结果是否可以扩展到不规则小波系统。除了不规则Gabor和小波系统的理论之外,该建议还包括其他主题,例如子空间Gabor框架的所谓密度条件的研究和使用自仿射多瓦片构造的小波集的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabardo, JeanPierre其他文献
Gabardo, JeanPierre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabardo, JeanPierre', 18)}}的其他基金
Frames generated by unitary systems.
由单一系统生成的框架。
- 批准号:
RGPIN-2014-05935 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Frames generated by unitary systems.
由单一系统生成的框架。
- 批准号:
RGPIN-2014-05935 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Frames generated by unitary systems.
由单一系统生成的框架。
- 批准号:
RGPIN-2014-05935 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Frames generated by unitary systems.
由单一系统生成的框架。
- 批准号:
RGPIN-2014-05935 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Frames generated by unitary systems.
由单一系统生成的框架。
- 批准号:
RGPIN-2014-05935 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Continuous and discrete Gabor and wavelet analysis
连续和离散 Gabor 和小波分析
- 批准号:
36534-2008 - 财政年份:2013
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Continuous and discrete Gabor and wavelet analysis
连续和离散 Gabor 和小波分析
- 批准号:
36534-2008 - 财政年份:2011
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Continuous and discrete Gabor and wavelet analysis
连续和离散 Gabor 和小波分析
- 批准号:
36534-2008 - 财政年份:2010
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Continuous and discrete Gabor and wavelet analysis
连续和离散 Gabor 和小波分析
- 批准号:
36534-2008 - 财政年份:2009
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Fourier analysis and moment problems
傅里叶分析和矩问题
- 批准号:
36534-2002 - 财政年份:2007
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
离散谱聚合与谱廓受限的传输理论与技术的研究
- 批准号:60972057
- 批准年份:2009
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
- 批准号:
2416160 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
CRII: FET: Quantum Advantages through Discrete Quantum Walks
CRII:FET:离散量子行走的量子优势
- 批准号:
2348399 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Polymer Nanocomposites using Discrete Nanoparticles and Bicontinuous Scaffolds: New Strategies for Connective Morphologies and Property Control
使用离散纳米粒子和双连续支架的聚合物纳米复合材料:连接形态和性能控制的新策略
- 批准号:
2407300 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Continuing Grant
NEWWAVE: New methods for analysing travelling waves in discrete systems with applications to neuroscience
NEWWAVE:分析离散系统中行波的新方法及其在神经科学中的应用
- 批准号:
EP/Y027531/1 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Fellowship
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
- 批准号:
24K06852 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification, estimation, and inference of the discount factor in dynamic discrete choice models
动态离散选择模型中折扣因子的识别、估计和推断
- 批准号:
24K04814 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identifying user preferences to optimize HIV/Sexually Transmitted infections test among international migrants and tourists in Japan: A Discrete Choice Experiment
确定用户偏好以优化日本国际移民和游客的艾滋病毒/性传播感染测试:离散选择实验
- 批准号:
24K20238 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Harnessing the Reactivity of Strained Macrocycles to Access Discrete Carbon Nanostructures
利用应变大环化合物的反应性来获得离散的碳纳米结构
- 批准号:
2400147 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant