Frames generated by unitary systems.

由单一系统生成的框架。

基本信息

  • 批准号:
    RGPIN-2014-05935
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

This proposal involves various aspects of modern Fourier analysis dealing with systems (e.g. orthonormal bases. Riesz bases, frames,...) generated by a family (usually a group) of unitary operators acting on a single or finitely many elements of a Hilbert space. More specifically, we are mainly interested in the case of Gabor systems,wavelet systems and windowed exponentials. There exist well-known techniquesto deal with these systems when the parameters used to define the correspondingunitary operators are regular, forming a discrete group for example.However, when the parameters are irregular, these techniques generally break downand there are many unsolved problems regarding the corresponding irregular systemswhich I would like to pursue. Related to these, we also propose to work on the theory of spectral pairs and spectral measures, which can be seen as natural generalizations of the concept of Fourier series on an interval. Fourier series where first discovered by Fourier in the process of finding a suitable expression for the solutions of the heat equation. Since their discovery,they have played a fundamental role in both pure and applied mathematics, more particularly in the theory of partial differential equations. The main mathematical ingredients behind Fourier series are the complex exponential functions which turm out, for suitably chosenvalues of the parameters used to define them, to be orthogonal and complete in the space of square-integrable functions on the given interval. One can replace this intervalby an arbitrary (measurable) set E and ask if there exists a family of complex exponentialswhich forms a complete orthogonal system for the corresponding space of square in integrable functions on E. If this is the case, E is called a spectral set. It is not difficult toconstruct examples of such setswhich are not intervals and B. Fuglede noticed that allsuch sets seem to ''tile" the real line by translations, in the sense that the real line could be covered by an infinite number of translates of the set E which do not overlap (up to sets of zero measure). This lead Fuglede to formulate his now famous conjecture in an Euclidean space of arbitrary dimension stating that a set E admits an orthogonal basis of complex exponential if and only if it tiles the Euclidean space by translation. Unfortunately, this conjecture has now been shown to be false in both direction indimension 3 or higher, although the lower-dimensional problems are still open. We propose to work on the theory of spectral measures which are closely related to spectral sets.A probability measure is spectral if the corresponding space of square-integrable functions admits an orthogonal basisof exponentials. Recent results by C.-K. Lai and myself suggest that, at least in some situations,there is a relationship between the fact that a measure is spectral and a convolution property, which can be seen as some generalization of a tiling property. I would like to investigate these type of problems in more details with the hopeto shed more light to the fascinating properties of spectral sets and spectral measures in relation to Fuglede's conjecture.
这个建议涉及处理系统的现代傅立叶分析的各个方面(例如正交基)。Riesz基础、框架...)由作用于希尔伯特空间的单个或多个元素的酉算子族(通常是一个群)生成。更具体地说,我们主要感兴趣的情况下的Gabor系统,小波系统和加窗指数。当用于定义相应酉算子的参数是正则的,例如形成一个离散群时,有一些众所周知的技术来处理这些系统,然而,当参数是不规则的时,这些技术通常失效,并且关于相应的不规则系统有许多未解决的问题,我想继续下去。与此相关,我们还建议研究谱对和谱测度的理论,这可以看作是区间上傅立叶级数概念的自然推广。傅立叶级数首先由傅立叶在寻找热方程解的合适表达式的过程中发现。自从他们的发现,他们发挥了基础作用,在纯数学和应用数学,更特别是在理论的偏微分方程。傅立叶级数背后的主要数学成分是复指数函数,对于用于定义它们的参数的适当选择值,它们在给定区间上的平方可积函数空间中是正交和完备的。我们可以用任意的(可测的)集合E来代替这个区间,并询问是否存在一族复指数,它们在E上的可积函数的相应平方空间中构成一个完备的正交系。如果是这种情况,则E称为谱集。构造这样的集合的例子并不困难,它们不是区间和B。Fuglede注意到,所有这些集似乎“瓦”的真实的行的翻译,在这个意义上说,真实的行可以涵盖无限数量的翻译的一套E不重叠(至套零措施)。这导致Fuglede制定他现在著名的猜想在欧几里德空间的任意维度指出,一组E承认一个正交的基础上复指数当且仅当它瓷砖欧几里德空间的翻译。不幸的是,这个猜想现在已经被证明是错误的,在两个方向在3维或更高,虽然低维的问题仍然是开放的。本文研究了与谱集密切相关的谱测度理论,如果平方可积函数空间中存在一个指数正交基,则概率测度是谱测度. C.最近的结果- K. Lai和我认为,至少在某些情况下,测度是谱的这一事实与卷积性质之间存在关系,这可以被视为平铺性质的某种推广。我想调查这些类型的问题,在更详细的信息,使更多的光的迷人性质的光谱集和光谱措施有关Fuglede的猜想。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gabardo, JeanPierre其他文献

Gabardo, JeanPierre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gabardo, JeanPierre', 18)}}的其他基金

Frames generated by unitary systems.
由单一系统生成的框架。
  • 批准号:
    RGPIN-2014-05935
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Frames generated by unitary systems.
由单一系统生成的框架。
  • 批准号:
    RGPIN-2014-05935
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Frames generated by unitary systems.
由单一系统生成的框架。
  • 批准号:
    RGPIN-2014-05935
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Frames generated by unitary systems.
由单一系统生成的框架。
  • 批准号:
    RGPIN-2014-05935
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Continuous and discrete Gabor and wavelet analysis
连续和离散 Gabor 和小波分析
  • 批准号:
    36534-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Continuous and discrete Gabor and wavelet analysis
连续和离散 Gabor 和小波分析
  • 批准号:
    36534-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Continuous and discrete Gabor and wavelet analysis
连续和离散 Gabor 和小波分析
  • 批准号:
    36534-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Continuous and discrete Gabor and wavelet analysis
连续和离散 Gabor 和小波分析
  • 批准号:
    36534-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Continuous and discrete Gabor and wavelet analysis
连续和离散 Gabor 和小波分析
  • 批准号:
    36534-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Fourier analysis and moment problems
傅里叶分析和矩问题
  • 批准号:
    36534-2002
  • 财政年份:
    2007
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于多重计算全息片(Computer-generated Hologram,CGH)的光学非球面干涉绝对检验方法研究
  • 批准号:
    62375132
  • 批准年份:
    2023
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
面向人工智能生成内容的风险识别与治理策略研究
  • 批准号:
    72304290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Attribution of Machine-generated Code for Accountability
机器生成代码的责任归属
  • 批准号:
    DP240102164
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Projects
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
  • 批准号:
    2341206
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Local Collection and Treatment of Laser Generated Decontamination Fume
激光净化烟气的本地收集和处理
  • 批准号:
    2902249
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Studentship
Field Measurements for Understanding Atmospheric Oxidation Generated by Electrical Discharges
用于了解放电产生的大气氧化的现场测量
  • 批准号:
    2323203
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Understanding of Consumption Context Using User Generated Big Data
使用用户生成的大数据了解消费环境
  • 批准号:
    23H00859
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of cognitive maps and their memory generated from combinations of multi modalities.
分析多模态组合生成的认知图及其记忆。
  • 批准号:
    23K16962
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Trustable AI generated Mapping (TAIM)
可信人工智能生成地图 (TAIM)
  • 批准号:
    10064920
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Collaborative R&D
Effect of the odorants generated by the Maillard reaction on aging through inhalation
美拉德反应产生的气味物质对吸入老化的影响
  • 批准号:
    22KJ2827
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
  • 批准号:
    10699828
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
Catalytically Generated Amidyl Radicals for Site-Selective Intermolecular C-H Functionalization
催化生成酰胺自由基用于位点选择性分子间 C-H 官能化
  • 批准号:
    10679463
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了