Learning detailed models from images and videos using machine learning techniques and applications to graphics
使用机器学习技术和图形应用从图像和视频中学习详细模型
基本信息
- 批准号:341585-2007
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2008
- 资助国家:加拿大
- 起止时间:2008-01-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Synthetic images and animations of real scenes are now common place in different domains such as medicine, computer games, feature films, TV advertising, homeland security, and fine arts. Creating these images and animation is the first goal of computer graphics. Traditional computer graphics approaches start with geometric models and then generate and display virtual representations. Many computer graphics approaches have been successful. However, it is clear that synthetic images and animation still look artificial and that the cost and time have to be lowered. In the past, the field of computer graphics has been considered as the inverse of computer vision. Indeed, computer vision starts with input images and videos and process them to understand the geometric and physical properties of objects and scenes. The objectives of my research are the integration of computer vision and computer graphics techniques, and the creation of a framework in which these two domains collaborate through machine learning techniques to model the world around us (e.g. human body and motion, natural scenes, rigid and non-rigid objects) directly from measurements. These measurements will be learned from real images and scenes. Indeed, recent years have seen a significant technological development in the areas of high-quality sensors which have simplified the acquisition of the world content.
真实的场景的合成图像和动画现在常见于不同的领域,例如医学、计算机游戏、故事片、电视广告、国土安全和美术。创建这些图像和动画是计算机图形学的首要目标。 传统的计算机图形学方法从几何模型开始,然后生成和显示虚拟表示。许多计算机图形学方法已经取得了成功。然而,很明显,合成图像和动画看起来仍然是人工的,并且必须降低成本和时间。 在过去,计算机图形学领域一直被认为是计算机视觉的逆。事实上,计算机视觉从输入图像和视频开始,并对其进行处理,以了解物体和场景的几何和物理特性。我的研究目标是整合计算机视觉和计算机图形技术,并创建一个框架,在这个框架中,这两个领域通过机器学习技术合作,直接从测量中建模我们周围的世界(例如人体和运动,自然场景,刚性和非刚性物体)。这些测量将从真实的图像和场景中学习。 事实上,近年来在高质量传感器领域取得了重大的技术发展,这些传感器简化了世界内容的获取。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bouguila, Nizar其他文献
A variational Bayes model for count data learning and classification
- DOI:
10.1016/j.engappai.2014.06.023 - 发表时间:
2014-10-01 - 期刊:
- 影响因子:8
- 作者:
Bakhtiari, Ali Shojaee;Bouguila, Nizar - 通讯作者:
Bouguila, Nizar
Markov Chain Monte Carlo-Based Bayesian Inference for Learning Finite and Infinite Inverted Beta-Liouville Mixture Models
- DOI:
10.1109/access.2021.3078670 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Bourouis, Sami;Alroobaea, Roobaea;Bouguila, Nizar - 通讯作者:
Bouguila, Nizar
On Ransomware Family Attribution Using Pre-Attack Paranoia Activities
使用攻击前偏执活动进行勒索软件家族归因
- DOI:
10.1109/tnsm.2021.3112056 - 发表时间:
2022 - 期刊:
- 影响因子:5.3
- 作者:
Molina, Ricardo Misael;Torabi, Sadegh;Sarieddine, Khaled;Bou-Harb, Elias;Bouguila, Nizar;Assi, Chadi - 通讯作者:
Assi, Chadi
Bayesian frameworks for traffic scenes monitoring via view-based 3D cars models recognition
- DOI:
10.1007/s11042-019-7275-3 - 发表时间:
2019-07-01 - 期刊:
- 影响因子:3.6
- 作者:
Bourouis, Sami;Laalaoui, Yacine;Bouguila, Nizar - 通讯作者:
Bouguila, Nizar
Spherical data clustering and feature selection through nonparametric Bayesian mixture models with von Mises distributions
通过具有 von Mises 分布的非参数贝叶斯混合模型进行球形数据聚类和特征选择
- DOI:
10.1016/j.engappai.2020.103781 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:8
- 作者:
Fan, Wentao;Bouguila, Nizar - 通讯作者:
Bouguila, Nizar
Bouguila, Nizar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bouguila, Nizar', 18)}}的其他基金
Time-sensitive non-parametric Bayesian approaches for events modeling, recognition and prediction
用于事件建模、识别和预测的时间敏感非参数贝叶斯方法
- 批准号:
RGPIN-2017-06656 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Time-sensitive non-parametric Bayesian approaches for events modeling, recognition and prediction
用于事件建模、识别和预测的时间敏感非参数贝叶斯方法
- 批准号:
RGPIN-2017-06656 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Time-sensitive non-parametric Bayesian approaches for events modeling, recognition and prediction
用于事件建模、识别和预测的时间敏感非参数贝叶斯方法
- 批准号:
RGPIN-2017-06656 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Time-sensitive non-parametric Bayesian approaches for events modeling, recognition and prediction
用于事件建模、识别和预测的时间敏感非参数贝叶斯方法
- 批准号:
RGPIN-2017-06656 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Offline virtual advertisement replacement in sports from uncalibrated video**
体育运动中的离线虚拟广告替换为未经校准的视频**
- 批准号:
537359-2018 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Engage Grants Program
Time-sensitive non-parametric Bayesian approaches for events modeling, recognition and prediction
用于事件建模、识别和预测的时间敏感非参数贝叶斯方法
- 批准号:
RGPIN-2017-06656 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Time-sensitive non-parametric Bayesian approaches for events modeling, recognition and prediction
用于事件建模、识别和预测的时间敏感非参数贝叶斯方法
- 批准号:
RGPIN-2017-06656 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Apprentissage statistique hybride (génératif/discriminatif) de modèles multi-relationnels dynamiques et Applications
多关系动态与应用模型的学徒统计混合(génératif/discriminatif)
- 批准号:
341585-2012 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Apprentissage statistique hybride (génératif/discriminatif) de modèles multi-relationnels dynamiques et Applications
多关系动态与应用模型的学徒统计混合(génératif/discriminatif)
- 批准号:
341585-2012 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Apprentissage statistique hybride (génératif/discriminatif) de modèles multi-relationnels dynamiques et Applications
多关系动态与应用模型的学徒统计混合(génératif/discriminatif)
- 批准号:
341585-2012 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Resolving the Shortcomings in Modern NH3 Kinetics Models using Detailed Species Time Histories and Direct Rate Measurements
使用详细的物种时间历史和直接速率测量解决现代 NH3 动力学模型的缺点
- 批准号:
2308433 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
Detailed CB equations in QBD processes with explosive state space and its applications to queueing models
具有爆炸状态空间的QBD过程中的详细CB方程及其在排队模型中的应用
- 批准号:
22K11923 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Next generation electromagnetic transient simulation tool for large-scale power systems with detailed equipment models
用于大型电力系统的下一代电磁暂态仿真工具,具有详细的设备模型
- 批准号:
515592-2017 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Collaborative Research and Development Grants
Developing surrogate structural analysis models using machine learning for detailed design workflows
使用机器学习开发替代结构分析模型以实现详细设计工作流程
- 批准号:
2574267 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Studentship
Detailed models of technological plasmas
技术等离子体的详细模型
- 批准号:
2006661 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Studentship
Automatic Generation of detailed 3D Building Models for BIM (Building Information Model)
自动生成 BIM(建筑信息模型)详细 3D 建筑模型
- 批准号:
18K04523 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Next generation electromagnetic transient simulation tool for large-scale power systems with detailed equipment models
用于大型电力系统的下一代电磁暂态仿真工具,具有详细的设备模型
- 批准号:
515592-2017 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Collaborative Research and Development Grants
Next generation electromagnetic transient simulation tool for large-scale power systems with detailed equipment models
用于大型电力系统的下一代电磁暂态仿真工具,具有详细的设备模型
- 批准号:
515592-2017 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Collaborative Research and Development Grants
Tectonic geomorphology of coastal area along the Ryukyu Arc based on the topographic anaglyphs from detailed digital elevation models covering Inland and Seafloor
基于覆盖内陆和海底的详细数字高程模型的地形立体图的琉球弧沿岸地区的构造地貌
- 批准号:
16K01221 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Resolving discrepancies in detailed kinetic models of combustion via automated transition state theory calculations
通过自动过渡态理论计算解决详细燃烧动力学模型中的差异
- 批准号:
1605568 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant