New computational methods for studying the quantum dynamics of systems with five and more atoms
研究具有五个及更多原子的系统的量子动力学的新计算方法
基本信息
- 批准号:139030-2009
- 负责人:
- 金额:$ 6.56万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2009
- 资助国家:加拿大
- 起止时间:2009-01-01 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The properties of molecules (their shape and size, the way they vibrate) are governed by quantum mechanics. According to quantum mechanics, the energy of a molecule can take only certain values. These values may be determined by solving an equation called the Schroedinger equation (SE). Using solutions of the SE one can deduce properties of molecules and interpret experimental results. The subject of this proposal is the solution of the SE associated with the vibration and rotation of small molecules. The SE is generally solved by representing the state of the molecule (a function from which one can calculate all observable properties) in terms of a set of known functions, called basis functions. It is difficult to solve because the number of basis functions required is very large. If a large number of basis functions is necessary the computer memory required and the calculation time are large. The more nuclei a molecule has the larger the number of basis functions required. We propose methods of coping with very large sets of basis functions. The ideas I propose are necessary for studying molecules with five or more atoms: established methods are not adequate. We will study, for example, methane. Methane is of interest in astrophysics and in atmospheric science. In the earth's atmosphere methane is a greenhouse gas. The greenhouse effect is the rise in temperature that the Earth experiences because gases in the atmosphere trap energy from the sun. Greenhouse gases cause the earth to warm up, like the inside of a car parked in the sun. Understanding methane better may help us to know to what extent methane is responsible for global warming. Using similar ideas we will calculate rates of reactions. From such rates one can understand the chemistry that takes places in the atmosphere. In the long term, it will be possible to use the methods we develop to understand proton transfer reactions in biological molecules. In the course of doing this research, graduate students will be trained in computational chemistry, numerical analysis and computers. Because computational science is important for maintaining health and prosperity it is critical that Canada train scientists to develop and use modern numerical methods and modern computers.
分子的性质(它们的形状和大小,它们振动的方式)由量子力学控制。根据量子力学,分子的能量只能取一定的值。这些值可以通过求解称为薛定谔方程(SE)的方程来确定。使用SE的解决方案,人们可以推断分子的性质和解释实验结果。本提案的主题是解决与小分子振动和旋转相关的SE问题。SE通常通过用一组已知函数(称为基函数)表示分子的状态(一个可以计算所有可观察性质的函数)来求解。这是很难解决的,因为所需的基函数的数量非常大。 如果需要大量的基函数,则需要大量的计算机存储器和计算时间。一个分子的原子核越多,所需要的基函数就越多。我们提出了处理非常大的基函数集的方法。我所提出的想法对于研究具有五个或更多原子的分子是必要的:现有的方法是不够的。例如,我们将研究甲烷。甲烷在天体物理学和大气科学中具有重要意义。 在地球大气中,甲烷是一种温室气体。温室效应是地球经历的温度上升,因为大气中的气体捕获来自太阳的能量。温室气体导致地球变暖,就像停在阳光下的汽车内部一样。更好地了解甲烷可能有助于我们了解甲烷在多大程度上对全球变暖负有责任。利用类似的思想,我们将计算反应速率。从这样的速率,人们可以了解大气中发生的化学反应。从长远来看,将有可能使用我们开发的方法来理解生物分子中的质子转移反应。 在做这项研究的过程中,研究生将在计算化学,数值分析和计算机培训。由于计算科学对保持健康和繁荣很重要,加拿大必须培训科学家开发和使用现代数值方法和现代计算机。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carrington, Jr, Tucker其他文献
Carrington, Jr, Tucker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carrington, Jr, Tucker', 18)}}的其他基金
New methods for calculating ro-vibrational spectra and rate constants
计算旋转振动谱和速率常数的新方法
- 批准号:
139030-2004 - 财政年份:2008
- 资助金额:
$ 6.56万 - 项目类别:
Discovery Grants Program - Individual
New methods for calculating ro-vibrational spectra and rate constants
计算旋转振动谱和速率常数的新方法
- 批准号:
139030-2004 - 财政年份:2007
- 资助金额:
$ 6.56万 - 项目类别:
Discovery Grants Program - Individual
New methods for calculating ro-vibrational spectra and rate constants
计算旋转振动谱和速率常数的新方法
- 批准号:
139030-2004 - 财政年份:2006
- 资助金额:
$ 6.56万 - 项目类别:
Discovery Grants Program - Individual
Workstations for quantum dynamics and molecular electronics
量子动力学和分子电子学工作站
- 批准号:
330991-2006 - 财政年份:2005
- 资助金额:
$ 6.56万 - 项目类别:
Research Tools and Instruments - Category 1 (<$150,000)
New methods for calculating ro-vibrational spectra and rate constants
计算旋转振动谱和速率常数的新方法
- 批准号:
139030-2004 - 财政年份:2005
- 资助金额:
$ 6.56万 - 项目类别:
Discovery Grants Program - Individual
New methods for calculating ro-vibrational spectra and rate constants
计算旋转振动谱和速率常数的新方法
- 批准号:
139030-2004 - 财政年份:2004
- 资助金额:
$ 6.56万 - 项目类别:
Discovery Grants Program - Individual
Iterative methods for calculating ro-vibrational spectra, polarisabilities and resonance lifetimes
计算旋转振动谱、极化率和共振寿命的迭代方法
- 批准号:
139030-2000 - 财政年份:2003
- 资助金额:
$ 6.56万 - 项目类别:
Discovery Grants Program - Individual
Iterative methods for calculating ro-vibrational spectra, polarisabilities and resonance lifetimes
计算旋转振动谱、极化率和共振寿命的迭代方法
- 批准号:
139030-2000 - 财政年份:2002
- 资助金额:
$ 6.56万 - 项目类别:
Discovery Grants Program - Individual
Iterative methods for calculating ro-vibrational spectra, polarisabilities and resonance lifetimes
计算旋转振动谱、极化率和共振寿命的迭代方法
- 批准号:
139030-2000 - 财政年份:2001
- 资助金额:
$ 6.56万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
物体运动对流场扰动的数学模型研究
- 批准号:51072241
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PROTACS: new computational methods and targets
PROTACS:新的计算方法和目标
- 批准号:
2897704 - 财政年份:2023
- 资助金额:
$ 6.56万 - 项目类别:
Studentship
Develop new bioinformatics infrastructures and computational tools for epitranscriptomics data
为表观转录组数据开发新的生物信息学基础设施和计算工具
- 批准号:
10633591 - 财政年份:2023
- 资助金额:
$ 6.56万 - 项目类别:
Development of New Computational Methods for Phase Transition in Flow Problems With Contact Between Moving Solid Surfaces
移动固体表面接触流动问题相变新计算方法的开发
- 批准号:
23H00477 - 财政年份:2023
- 资助金额:
$ 6.56万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
New statistical and computational tools for optimization of planarian behavioral chemical screens
用于优化涡虫行为化学筛选的新统计和计算工具
- 批准号:
10658688 - 财政年份:2023
- 资助金额:
$ 6.56万 - 项目类别:
Computational Models for New Developments in Radical Chemistry
自由基化学新发展的计算模型
- 批准号:
10720509 - 财政年份:2023
- 资助金额:
$ 6.56万 - 项目类别:
New approach for identification pHFO networks to predict epileptogenesis
识别 pHFO 网络以预测癫痫发生的新方法
- 批准号:
10665791 - 财政年份:2022
- 资助金额:
$ 6.56万 - 项目类别:
RM1 Center on Macromolecular Dynamics by NMR Spectroscopy at the New York Structural Biology Center (CoMD/NMR)
纽约结构生物学中心 (CoMD/NMR) 的 RM1 核磁共振波谱大分子动力学中心
- 批准号:
10654062 - 财政年份:2022
- 资助金额:
$ 6.56万 - 项目类别:
RM1 Center on Macromolecular Dynamics by NMR Spectroscopy at the New York Structural Biology Center (CoMD/NMR)
纽约结构生物学中心 (CoMD/NMR) 的 RM1 核磁共振波谱大分子动力学中心
- 批准号:
10412493 - 财政年份:2022
- 资助金额:
$ 6.56万 - 项目类别:
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
- 批准号:
RGPIN-2019-03991 - 财政年份:2022
- 资助金额:
$ 6.56万 - 项目类别:
Discovery Grants Program - Individual
A New Informatics Approach for Detection of Cerebrovascular Abnormalities
检测脑血管异常的新信息学方法
- 批准号:
10682493 - 财政年份:2022
- 资助金额:
$ 6.56万 - 项目类别: