The influence of deceptive visual cues and of interoception on affective valence and perceived exertion when cycling using a virtual reality bike

使用虚拟现实自行车骑行时,欺骗性视觉线索和内感受对情感价和感知用力的影响

基本信息

  • 批准号:
    Local : research.unisa.edu.au/project/777303
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    澳大利亚
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    澳大利亚
  • 起止时间:
    2019-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This experimental study, funded by UniSA Research Themes Investment Scheme, seeks to identify whether deceptive visual cues about the cycling environment can influence exercise experiences. It also explored whether an individual's ability to accurately detect internal signals (interoceptive accuracy) influences the effect of visual cues on ratings of perceived exertion or affective valence. All participants completed 3 virtual reality cycling conditions in a randomised order (illusory uphills, flat terrain, illusory downhills).<br /> <br /> In the illusory conditions, the participants viewed hills in the virtual environment, but cycle resistance did not change and pedal cadence was held constant (physical effort held constant). Primary outcomes were ratings of perceived exertion during cycling and affective valence during cycling. The data associated with this project were collected at the Clinical Trials Centre at the University of South Australia in Adelaide, SA.
这项实验研究由南萨大学研究主题投资计划资助,旨在确定关于骑车环境的欺骗性视觉线索是否会影响锻炼体验。它还探讨了个人准确探测内部信号的能力(内感受准确性)是否会影响视觉线索对感知努力或情感效价评级的影响。所有参与者都以随机顺序完成了3个虚拟现实骑行条件(幻觉上坡,平坦地形,幻觉下坡)。< br / >

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AsPr Tasha Stanton其他文献

AsPr Tasha Stanton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Deceptive Speech in Context: A Social Perspective
上下文中的欺骗性言论:社会视角
  • 批准号:
    2886237
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
SaTC: CORE: Small: Towards Deceptive and Domain-Specific Cyber-Physical Honeypots
SaTC:核心:小型:走向欺骗性和特定领域的网络物理蜜罐
  • 批准号:
    2231651
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Exploring how autistic adults engage in deceptive communication and detect deception.
探索自闭症成年人如何进行欺骗性沟通并发现欺骗。
  • 批准号:
    2866645
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of a Staph Aureus Vaccine
金黄色葡萄球菌疫苗的开发
  • 批准号:
    10699035
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: SaTC: CORE: Medium: Self-Learning and Self-Evolving Detection of Altered, Deceptive Images and Videos
协作研究:SaTC:核心:媒介:篡改、欺骗性图像和视频的自学习和自进化检测
  • 批准号:
    2243161
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Empowering White-box Driven Analytics to Detect AI-synthesized Deceptive Content
职业:授权白盒驱动分析来检测人工智能合成的欺骗性内容
  • 批准号:
    2146448
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CRII: CHS: Harnessing Machine Learning to Improve Human Decision Making: A Case Study on Deceptive Detection
CRII:CHS:利用机器学习改善人类决策:欺骗检测案例研究
  • 批准号:
    2125113
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Self-Learning and Self-Evolving Detection of Altered, Deceptive Images and Videos
协作研究:SaTC:核心:媒介:篡改、欺骗性图像和视频的自学习和自进化检测
  • 批准号:
    2027398
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Self-Learning and Self-Evolving Detection of Altered, Deceptive Images and Videos
协作研究:SaTC:核心:媒介:篡改、欺骗性图像和视频的自学习和自进化检测
  • 批准号:
    2027114
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: CHS: Harnessing Machine Learning to Improve Human Decision Making: A Case Study on Deceptive Detection
CRII:CHS:利用机器学习改善人类决策:欺骗检测案例研究
  • 批准号:
    1849931
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了