The Schramm-Loewner evolution and scaling limits of discrete planar processes

离散平面过程的 Schramm-Loewner 演化和缩放限制

基本信息

  • 批准号:
    312354-2008
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2009
  • 资助国家:
    加拿大
  • 起止时间:
    2009-01-01 至 2010-12-31
  • 项目状态:
    已结题

项目摘要

One of the broad goals of statistical mechanics is to understand the behaviour of a physical system at criticality; that is, at (or near) the temperature at which a phase transition occurs. A well-known example of a phase transition occurs when water freezes (i.e., it changes state from liquid to solid) or when it boils (i.e., it changes state from solid to gas). In more elaborate models, the continuous physical system is well-described by a discrete, or lattice, model. These lattice models are often more tractable mathematically, and often physical or chemical predictions about the continuous system can be proved rigorously using results established for the lattice model. An important class of systems are two-dimensional; by first understanding two-dimensional models, we may better hope to understand our three-dimensional world. An exciting development occurred in 2000 when Oded Schramm introduced the stochastic Loewner evolution (SLE) while studying scaling limits of loop-erased random walk. SLE is a new class of conformally invariant stochastic processes which has revolutionized the study of critical phenomenon in statistical mechanics. In fact, its importance was punctuated by the awarding of the Fields Medal to Wendelin Werner "for his contributions to the development of stochastic Loewner evolution, the geometry of two-dimensional Brownian motion, and conformal field theory.'' Although this program of study has already produced several deeply significant results, there is still much more work to be done. For instance, the self-avoiding random walk, a model of polymer chains introduced by the Nobel prize-winning chemist Paul Flory in the 1940's, is a model where minimal mathematical progress has been made and is one of the motivations for much of this entire program of study. Another important area of study that has not yet received much attention is the case of multiple interfaces that occur naturally in, for example, ferromagnetism and the corresponding Ising model. Therefore, the primary goal of this research program is to study multiple SLE curves and their interactions which is the natural continuous object to study when considering multiple interfaces.
统计力学的主要目标之一是理解物理系统在临界状态下的行为;也就是说,在(或接近)发生相变的温度下。相变的一个众所周知的例子发生在水冻结时(即,它从液体状态变为固体)或沸腾时(即,它从固体状态变为气体)。在更精细的模型中,连续的物理系统可以用离散的或点阵的模型很好地描述。这些点阵模型通常在数学上更容易处理,并且通常可以使用为点阵模型建立的结果严格证明关于连续系统的物理或化学预测。二维系统是一类重要的系统;通过首先了解二维模型,我们可能更有希望了解我们的三维世界。2000年,Oded Schramm在研究环擦除随机游走的尺度限制时引入了随机下限进化(SLE),这是一个令人兴奋的发展。SLE是一类新的共形不变随机过程,它使统计力学中临界现象的研究发生了革命性的变化。事实上,由于温德林·维尔纳在发展随机洛厄纳演化、二维布朗运动几何和共形场论方面的贡献,菲尔兹奖进一步强调了它的重要性。尽管这个研究项目已经产生了一些意义深远的成果,但仍有许多工作要做。例如,自我避免随机游走,这是一个聚合物链模型,由诺贝尔奖得主化学家保罗·弗洛里在20世纪40年代提出,是一个数学上进展最小的模型,也是整个研究项目的动力之一。另一个尚未受到重视的重要研究领域是自然出现的多界面的情况,例如铁磁性和相应的Ising模型。因此,本研究项目的首要目标是研究多个SLE曲线及其相互作用,这是考虑多个界面时自然的连续研究对象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kozdron, MichaelJohn其他文献

Kozdron, MichaelJohn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kozdron, MichaelJohn', 18)}}的其他基金

Two-dimensional lattice models at criticality and the Schramm-Loewner evolution
临界点的二维晶格模型和 Schramm-Loewner 演化
  • 批准号:
    312354-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Two-dimensional lattice models at criticality and the Schramm-Loewner evolution
临界点的二维晶格模型和 Schramm-Loewner 演化
  • 批准号:
    312354-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Two-dimensional lattice models at criticality and the Schramm-Loewner evolution
临界点的二维晶格模型和 Schramm-Loewner 演化
  • 批准号:
    312354-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Two-dimensional lattice models at criticality and the Schramm-Loewner evolution
临界点的二维晶格模型和 Schramm-Loewner 演化
  • 批准号:
    312354-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Two-dimensional lattice models at criticality and the Schramm-Loewner evolution
临界点的二维晶格模型和 Schramm-Loewner 演化
  • 批准号:
    312354-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
The Schramm-Loewner evolution and scaling limits of discrete planar processes
离散平面过程的 Schramm-Loewner 演化和缩放限制
  • 批准号:
    312354-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
The Schramm-Loewner evolution and scaling limits of discrete planar processes
离散平面过程的 Schramm-Loewner 演化和缩放限制
  • 批准号:
    312354-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
The Schramm-Loewner evolution and scaling limits of discrete planar processes
离散平面过程的 Schramm-Loewner 演化和缩放限制
  • 批准号:
    312354-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
The Schramm-Loewner evolution and scaling limits of discrete planar processes
离散平面过程的 Schramm-Loewner 演化和缩放限制
  • 批准号:
    312354-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Conformally invariant scaling limits and applications
共形不变的缩放限制和应用
  • 批准号:
    312354-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

随机 Loewner 演化相关问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机Loewner演变(SLE)与离散统计模型的尺度极限
  • 批准号:
    12161008
  • 批准年份:
    2021
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
Loewner微分方程和Cantor边界性质
  • 批准号:
    12171055
  • 批准年份:
    2021
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
Loewner微分方程
  • 批准号:
    11701166
  • 批准年份:
    2017
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
圆填充与随机Loewner演变(SLE)研究
  • 批准号:
    11661011
  • 批准年份:
    2016
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
Loewner算子单调函数与p-亚正规算子类
  • 批准号:
    10926074
  • 批准年份:
    2009
  • 资助金额:
    4.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Further Studies on the Schramm-Loewner Evolution
Schramm-Loewner 演化的进一步研究
  • 批准号:
    524137-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    University Undergraduate Student Research Awards
Two-dimensional lattice models at criticality and the Schramm-Loewner evolution
临界点的二维晶格模型和 Schramm-Loewner 演化
  • 批准号:
    312354-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Two-dimensional models in statistical mechanics and the Schramm-Loewner Evolution
统计力学中的二维模型和 Schramm-Loewner 演化
  • 批准号:
    511300-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    University Undergraduate Student Research Awards
Schramm Loewner Evolution, The Rate of Convergence of Conformally Invariant Observables and Interfaces of Two-Dimensional Lattice Models in the Scaling Limit
Schramm Loewner 演化、共形不变可观测量的收敛率和缩放极限下二维晶格模型的界面
  • 批准号:
    476253-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Two-dimensional lattice models at criticality and the Schramm-Loewner evolution
临界点的二维晶格模型和 Schramm-Loewner 演化
  • 批准号:
    312354-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Schramm Loewner Evolution, The Rate of Convergence of Conformally Invariant Observables and Interfaces of Two-Dimensional Lattice Models in the Scaling Limit
Schramm Loewner 演化、共形不变可观测量的收敛率和缩放极限下二维晶格模型的界面
  • 批准号:
    476253-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Schramm Loewner Evolution, The Rate of Convergence of Conformally Invariant Observables and Interfaces of Two-Dimensional Lattice Models in the Scaling Limit
Schramm Loewner 演化、共形不变可观测量的收敛率和缩放极限下二维晶格模型的界面
  • 批准号:
    476253-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Two-dimensional lattice models at criticality and the Schramm-Loewner evolution
临界点的二维晶格模型和 Schramm-Loewner 演化
  • 批准号:
    312354-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric properties of Schramm-Loewner evolution and convergence of critical lattice interfaces.
Schramm-Loewner 演化的几何性质和临界晶格界面的收敛。
  • 批准号:
    426011-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Two-dimensional lattice models at criticality and the Schramm-Loewner evolution
临界点的二维晶格模型和 Schramm-Loewner 演化
  • 批准号:
    312354-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了