Two-dimensional lattice models at criticality and the Schramm-Loewner evolution

临界点的二维晶格模型和 Schramm-Loewner 演化

基本信息

  • 批准号:
    312354-2013
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

One of the goals of statistical mechanics is to understand the behaviour of a physical system at criticality; that is, at the temperature where a phase transition occurs. For example, a phase transition occurs when water freezes at 0 degrees Celsius (i.e., it changes state from liquid to solid) or when it boils at 100 degrees Celsius (i.e., it changes state from liquid to gas). In more elaborate situations, the continuous physical system is often described by a discrete, or lattice, model. These lattice models are often more tractable mathematically, and often physical or chemical predictions about the continuous system can be proved rigorously using results established for the lattice model. An important class of systems are two-dimensional; by first understanding two-dimensional models, we may better hope to understand our three-dimensional world. An exciting develop- ment occurred in 1999 when the late O. Schramm introduced the stochastic Loewner evolution (SLE) while studying loop-erased random walk. SLE is a new class of conformally invariant stochastic processes which has revolutionized the study of critical phenomenon in statistical mechanics. In fact, its importance was punctuated by the awarding of the Fields Medals in 2006 to W. Werner "for his contributions to the development of stochastic Loewner evolution, the geometry of two-dimensional Brownian motion, and conformal field theory" and in 2010 to S. Smirnov "for the proof of conformal invariance in percolation and the planar Ising model." Although this program of study has already produced several deeply significant results, there is still much more work to be done. For instance, the self-avoiding random walk, a model of polymer chains introduced by the Nobel prize-winning chemist P. Flory in the 1940's, is a model where minimal mathematical progress has been made and is one of the motivations for much of this entire program of study. Another important area of study that has not yet received much attention is the case of multiple interfaces that occur naturally in, for example, ferromagnetism and the corresponding Ising model. Thus, the primary goal of this research program is to help facilitate a better understanding of the interaction between SLE and conformal field theory.
统计力学的目标之一是了解物理系统在临界状态下的行为;也就是说,在相变发生的温度下。例如,当水在0摄氏度结冰时发生相变(即,它从液体变为固体)或当它在100摄氏度沸腾时(即,它将状态从液体变为气体)。在更复杂的情况下,连续的物理系统通常由离散或格模型描述。这些格子模型在数学上通常更容易处理,并且通常可以使用为格子模型建立的结果严格证明关于连续系统的物理或化学预测。一类重要的系统是二维的;通过首先理解二维模型,我们可能更有希望理解我们的三维世界。1999年出现了一个令人兴奋的发展,已故的O. Schramm在研究环擦除随机游动时引入了随机Loewner演化(SLE)。SLE是一类新的共形不变随机过程,它彻底改变了统计力学中临界现象的研究。事实上,2006年菲尔兹奖授予W。维尔纳“他的贡献,发展随机Loewner演化,二维布朗运动的几何,共形场理论”,并在2010年到S。Smirnov“证明了渗流和平面伊辛模型中的共形不变性。“虽然这项研究计划已经产生了一些非常重要的成果,但还有更多的工作要做。例如,自避免随机行走,一种由诺贝尔奖获得者化学家P. Flory在20世纪40年代引入的聚合物链模型,是一种数学进步最小的模型,也是整个研究计划的动机之一。另一个重要的研究领域,尚未得到太多的关注是自然发生的多个界面的情况下,例如,铁磁性和相应的伊辛模型。因此,这项研究计划的主要目标是帮助促进SLE和共形场理论之间的相互作用更好地理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kozdron, MichaelJohn其他文献

Kozdron, MichaelJohn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kozdron, MichaelJohn', 18)}}的其他基金

Two-dimensional lattice models at criticality and the Schramm-Loewner evolution
临界点的二维晶格模型和 Schramm-Loewner 演化
  • 批准号:
    312354-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Two-dimensional lattice models at criticality and the Schramm-Loewner evolution
临界点的二维晶格模型和 Schramm-Loewner 演化
  • 批准号:
    312354-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Two-dimensional lattice models at criticality and the Schramm-Loewner evolution
临界点的二维晶格模型和 Schramm-Loewner 演化
  • 批准号:
    312354-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Two-dimensional lattice models at criticality and the Schramm-Loewner evolution
临界点的二维晶格模型和 Schramm-Loewner 演化
  • 批准号:
    312354-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
The Schramm-Loewner evolution and scaling limits of discrete planar processes
离散平面过程的 Schramm-Loewner 演化和缩放限制
  • 批准号:
    312354-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
The Schramm-Loewner evolution and scaling limits of discrete planar processes
离散平面过程的 Schramm-Loewner 演化和缩放限制
  • 批准号:
    312354-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
The Schramm-Loewner evolution and scaling limits of discrete planar processes
离散平面过程的 Schramm-Loewner 演化和缩放限制
  • 批准号:
    312354-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
The Schramm-Loewner evolution and scaling limits of discrete planar processes
离散平面过程的 Schramm-Loewner 演化和缩放限制
  • 批准号:
    312354-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
The Schramm-Loewner evolution and scaling limits of discrete planar processes
离散平面过程的 Schramm-Loewner 演化和缩放限制
  • 批准号:
    312354-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Conformally invariant scaling limits and applications
共形不变的缩放限制和应用
  • 批准号:
    312354-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
  • 批准号:
    81150011
  • 批准年份:
    2011
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
肝脏管道系统数字化及三维成像的研究
  • 批准号:
    30470493
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Tensor Network Approach for the Two-Dimensional Kondo Lattice
二维近藤晶格的张量网络方法
  • 批准号:
    497779765
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    WBP Position
Tensor Network Approach for the Two-Dimensional Kondo Lattice
二维近藤晶格的张量网络方法
  • 批准号:
    439706636
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Research Fellowships
Study of quantum spin liquid in two-dimensional triangular-lattice ytterbium compounds
二维三角晶格镱化合物中量子自旋液体的研究
  • 批准号:
    18K03504
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Systematic charge doping and physical property studies for metallic quantum two-dimensional triangular lattice antiferromagnets
金属量子二维三角晶格反铁磁体的系统电荷掺杂和物理性质研究
  • 批准号:
    17K05515
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Two-dimensional lattice models at criticality and the Schramm-Loewner evolution
临界点的二维晶格模型和 Schramm-Loewner 演化
  • 批准号:
    312354-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Schramm Loewner Evolution, The Rate of Convergence of Conformally Invariant Observables and Interfaces of Two-Dimensional Lattice Models in the Scaling Limit
Schramm Loewner 演化、共形不变可观测量的收敛率和缩放极限下二维晶格模型的界面
  • 批准号:
    476253-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Pushing the frontier of simulations of two-dimensional multi-orbital fermionic lattice and Heisenberg models by fully exploiting non-abelian symmetries in tensor network states
通过充分利用张量网络状态中的非阿贝尔对称性,推动二维多轨道费米子晶格和海森堡模型模拟的前沿
  • 批准号:
    336042529
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Research Grants
Two-dimensional lattice models at criticality and the Schramm-Loewner evolution
临界点的二维晶格模型和 Schramm-Loewner 演化
  • 批准号:
    312354-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling the evolution of biological complexity with a two-dimensional lattice self-assembly process
用二维晶格自组装过程模拟生物复杂性的演化
  • 批准号:
    1805372
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Studentship
Schramm Loewner Evolution, The Rate of Convergence of Conformally Invariant Observables and Interfaces of Two-Dimensional Lattice Models in the Scaling Limit
Schramm Loewner 演化、共形不变可观测量的收敛率和缩放极限下二维晶格模型的界面
  • 批准号:
    476253-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了