Asymptotic and numerical analysis of hydraulic fractures

水力裂缝的渐近和数值分析

基本信息

  • 批准号:
    195803-2010
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2010
  • 资助国家:
    加拿大
  • 起止时间:
    2010-01-01 至 2011-12-31
  • 项目状态:
    已结题

项目摘要

Hydraulic fractures (HF) are brittle fractures that propagate in rock due to the injection of a viscous fluid. HF are deliberately created in oil and gas reservoirs to improve the connection between the extraction borehole and the rest of the reservoir. They are also used to pre-fracture ore-bodies in mining; to create fracture networks in geothermal reservoirs; and to dispose of waste. They will also be used in the sequestration of CO2. Unfortunately, propagating HF can perforate the impermeable layers that provide containment to the oil, waste, or CO2, leading to loss of hydrocarbons and severe environmental damage. It is thus crucial to have analysis tools to predict, monitor, and control the growth of HF. The objective of the proposed research is to develop asymptotic solutions and numerical algorithms for the accurate and efficient modeling and monitoring of HF propagation. The mathematical models for HF typically consist of a system of integro-partial differential equations together with boundary and propagation conditions that determine the location of the moving fracture boundaries. In this proposal, I outline a program of research that will build on the key developments that we have recently achieved in the asymptotic analysis and computational modeling of planar HF. In particular, I will develop a robust algorithm that will be able to model the propagation and recession of a planar HF through layered sedimentary rock. In addition, I plan a new initiative to develop computational tools to model the propagation of HF through networks of pre-existing fractures, which is important for the extraction of oil from deposits in shales. I also plan to use these accurate computational models to develop and calibrate models with reduced computational requirements. These reduced models will then be coupled with the Kalman Filter in order to monitor propagating HF by inverting the deformations that they induce in the rock.
水力压裂(HF)是由于粘性流体的注入而在岩石中传播的脆性裂缝。在油气藏中故意产生HF,以改善开采钻孔与储层其余部分之间的连接。它们还用于在采矿中预先压裂矿体;在地热储层中建立裂缝网络;以及处理废物。它们还将用于封存二氧化碳。不幸的是,传播的HF会破坏为油、废物或CO2提供密封的不可渗透层,导致碳氢化合物的损失和严重的环境破坏。因此,至关重要的是要有分析工具来预测,监测和控制HF的增长。拟议的研究的目的是开发渐近解和数值算法的准确和有效的建模和监测的HF传播。HF的数学模型通常由积分-偏微分方程系统以及确定移动裂缝边界位置的边界和传播条件组成。在这个建议中,我概述了一个研究计划,将建立在我们最近取得的进展,在渐近分析和计算建模的平面HF的关键。特别是,我将开发一个强大的算法,将能够模拟通过层状沉积岩的平面HF的传播和衰退。此外,我计划采取一项新举措,开发计算工具来模拟高频通过预先存在的裂缝网络的传播,这对于从页岩矿床中提取石油非常重要。我还计划使用这些精确的计算模型来开发和校准具有降低计算要求的模型。这些简化的模型将与卡尔曼滤波器耦合,以便通过反转它们在岩石中引起的变形来监测传播的HF。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peirce, Anthony其他文献

Peirce, Anthony的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peirce, Anthony', 18)}}的其他基金

The development of multi-scale computational tools to model multiple hydraulic fractures propagating in complex media.
开发多尺度计算工具来模拟复杂介质中传播的多个水力裂缝。
  • 批准号:
    RGPIN-2015-06039
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
The development of multi-scale computational tools to model multiple hydraulic fractures propagating in complex media.
开发多尺度计算工具来模拟复杂介质中传播的多个水力裂缝。
  • 批准号:
    RGPIN-2015-06039
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
The development of multi-scale computational tools to model multiple hydraulic fractures propagating in complex media.
开发多尺度计算工具来模拟复杂介质中传播的多个水力裂缝。
  • 批准号:
    RGPIN-2015-06039
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
The development of multi-scale computational tools to model multiple hydraulic fractures propagating in complex media.
开发多尺度计算工具来模拟复杂介质中传播的多个水力裂缝。
  • 批准号:
    RGPIN-2015-06039
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
The development of multi-scale computational tools to model multiple hydraulic fractures propagating in complex media.
开发多尺度计算工具来模拟复杂介质中传播的多个水力裂缝。
  • 批准号:
    RGPIN-2015-06039
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
The development of multi-scale computational tools to model multiple hydraulic fractures propagating in complex media.
开发多尺度计算工具来模拟复杂介质中传播的多个水力裂缝。
  • 批准号:
    RGPIN-2015-06039
  • 财政年份:
    2015
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic and numerical analysis of hydraulic fractures
水力裂缝的渐近和数值分析
  • 批准号:
    195803-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic and numerical analysis of hydraulic fractures
水力裂缝的渐近和数值分析
  • 批准号:
    195803-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic and numerical analysis of hydraulic fractures
水力裂缝的渐近和数值分析
  • 批准号:
    195803-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic and numerical analysis of hydraulic fractures
水力裂缝的渐近和数值分析
  • 批准号:
    195803-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

超声行波微流体驱动机理的试验研究
  • 批准号:
    51075243
  • 批准年份:
    2010
  • 资助金额:
    39.0 万元
  • 项目类别:
    面上项目
关于图像处理模型的目标函数构造及其数值方法研究
  • 批准号:
    11071228
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
  • 批准号:
    40972154
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目
孔隙介质中化学渗流溶解面非稳定性的理论分析与数值模拟实验研究
  • 批准号:
    10872219
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Asymptotic and Numerical Analysis of Wave Propagation in Thin-Structure Waveguides
薄结构波导中波传播的渐近和数值分析
  • 批准号:
    1939980
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Studentship
New problems in continuum mechanics: asymptotic eigenvalue distributions, rigorous numerical stability analysis and weakly nonlinear asymptotics in periodic thin film flow
连续介质力学的新问题:周期性薄膜流中的渐近特征值分布、严格的数值稳定性分析和弱非线性渐近
  • 批准号:
    1400555
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
Asymptotic and numerical analysis of hydraulic fractures
水力裂缝的渐近和数值分析
  • 批准号:
    195803-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic and numerical analysis of hydraulic fractures
水力裂缝的渐近和数值分析
  • 批准号:
    195803-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic and numerical analysis of hydraulic fractures
水力裂缝的渐近和数值分析
  • 批准号:
    195803-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic and numerical analysis of hydraulic fractures
水力裂缝的渐近和数值分析
  • 批准号:
    195803-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Higher-order asymptotic theory and numerical analysis for three-dimensional dynamics of a vortex filament in a flw
流场涡丝三维动力学的高阶渐近理论与数值分析
  • 批准号:
    11640398
  • 财政年份:
    1999
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic Analysis of Probability Laws and Path Behaviors for Markov Processes
马尔可夫过程的概率定律和路径行为的渐近分析
  • 批准号:
    09640293
  • 财政年份:
    1997
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Workshop on Asymptotic Analysis and the Numerical Solution of Nonlinear Differential Equations
数学科学:渐近分析和非线性微分方程数值解研讨会
  • 批准号:
    8903276
  • 财政年份:
    1989
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Interagency Agreement
Asymptotic and Numerical Analysis of Viscoelastic Flows
粘弹性流的渐近和数值分析
  • 批准号:
    7521030
  • 财政年份:
    1975
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了