Combinatorial Algebra

组合代数

基本信息

  • 批准号:
    227348-2009
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2010
  • 资助国家:
    加拿大
  • 起止时间:
    2010-01-01 至 2011-12-31
  • 项目状态:
    已结题

项目摘要

First posed early in the twentieth century, the famous Burnside Problem for groups asked: Is every finitely generated periodic group finite? The Kurosh-Levitzki Problem is an associative algebra analogue: Is every finitely generated nil algebra finite-dimensional? Counterexamples were first constructed by Golod and Shafarevich in the 1960's. It was natural, therefore, to reformulate these problems with additional hypotheses in order to obtain a positive solution. Zelmanov won the prestigious Fields Medal in 1994 for his proof that every finitely generated residually finite group is finite, thereby solving the so-called Restricted Burnside Problem for groups. I have extended Zelmanov's seminal work in group and Lie theory to a single unified theory that has direct applications to other branches of algebra. In particular, I have proved that a finitely generated nil algebra is finite-dimensional if it is infinitesimially PI. This is a significant generalisation Zelmanov's results. I have also had some success in applying my new theory to Kaplansky's Problem which addresses the structure of group algebras whose augmentational ideal is Jacobson radical. Zelmanov has referred to Kaplansky's Problem as the next big hurdle in group theory after the Restricted Burnside Problem.
早在世纪,著名的群的伯恩赛德问题就提出了这样的问题:是不是每个周期群都是有限的? Kurosh-Levitzki问题是一个结合代数的类似问题:是不是每一个生成的零代数都是有限维的? 反例最早是由Golod和Shafarevich在20世纪60年代提出的。 因此,很自然地,为了得到一个积极的解决办法,就需要用额外的假设重新表述这些问题。Zelmanov赢得了著名的菲尔兹奖于1994年,他的证明,每一个生成的剩余有限群是有限的,从而解决了所谓的限制伯恩赛德问题的群体。 我已经扩大Zelmanov的开创性工作组和李理论,以一个单一的统一理论,有直接应用到其他分支的代数。 特别地,我证明了一个生成的诣零代数是有限维的,如果它是无穷小PI。 这是Zelmanov结果的一个重要推广。我也有一些成功的应用我的新理论Kaplansky的问题,解决结构群代数的增广理想是雅各布森根。 Zelmanov提到Kaplansky问题作为下一个大的障碍,在群论后,限制伯恩赛德问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Riley, David其他文献

Life cycle assessment of exterior window shadings in residential buildings in different climate zones
  • DOI:
    10.1016/j.buildenv.2015.03.038
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Babaizadeh, Hamed;Haghighi, Nasim;Riley, David
  • 通讯作者:
    Riley, David
Improving Fellowship Training in Microsurgery: A Threshold Concepts Perspective on the Curricula of Fellowship Programs
  • DOI:
    10.1055/s-0035-1558461
  • 发表时间:
    2015-10-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Evgeniou, Evgenios;Tsironi, Maria;Riley, David
  • 通讯作者:
    Riley, David
A Maximum Dose Bioassay to Assess Efficacy of Key Insecticides Against Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae)
  • DOI:
    10.1093/jee/toab016
  • 发表时间:
    2021-02-13
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    De Marchi, Bruno Rossitto;Smith, Hugh;Riley, David
  • 通讯作者:
    Riley, David
Whitefly Population Dynamics and Evaluation of Whitefly-Transmitted Tomato Yellow Leaf Curl Virus (TYLCV)-Resistant Tomato Genotypes as Whitefly and TYLCV Reservoirs
  • DOI:
    10.1603/ec11402
  • 发表时间:
    2012-08-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Srinivasan, Rajagopalbabu;Riley, David;Adkins, Scott
  • 通讯作者:
    Adkins, Scott
The CARE Guidelines: Consensus-based Clinical Case Report Guideline Development
  • DOI:
    10.3109/19390211.2013.830679
  • 发表时间:
    2013-12-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Gagnier, Joel J.;Kienle, Gunver;Riley, David
  • 通讯作者:
    Riley, David

Riley, David的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Riley, David', 18)}}的其他基金

Combinatorial algebra: identities, actions and gradings
组合代数:恒等式、动作和分级
  • 批准号:
    RGPIN-2017-04631
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial algebra: identities, actions and gradings
组合代数:恒等式、动作和分级
  • 批准号:
    RGPIN-2017-04631
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial algebra: identities, actions and gradings
组合代数:恒等式、动作和分级
  • 批准号:
    RGPIN-2017-04631
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial algebra: identities, actions and gradings
组合代数:恒等式、动作和分级
  • 批准号:
    RGPIN-2017-04631
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial algebra: identities, actions and gradings
组合代数:恒等式、动作和分级
  • 批准号:
    RGPIN-2017-04631
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
  • 批准号:
    227348-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
  • 批准号:
    227348-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
  • 批准号:
    227348-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
  • 批准号:
    227348-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
  • 批准号:
    227348-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
  • 批准号:
    2348525
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Conference: 2023 Combinatorial Algebra meets Algebraic Combinatorics (CAAC)
会议:2023 组合代数遇上代数组合 (CAAC)
  • 批准号:
    2302019
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
New perspectives in combinatorial algebra
组合代数的新视角
  • 批准号:
    2302149
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
Problems in combinatorial commutative algebra
组合交换代数问题
  • 批准号:
    RGPIN-2019-05412
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology
组合表示理论:发现代数与几何和拓扑的接口
  • 批准号:
    EP/W007509/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
  • 批准号:
    RGPIN-2021-02391
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Graduate Meeting on Combinatorial Commutative Algebra
组合交换代数研究生会议
  • 批准号:
    2206872
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Combinatorial investigations in commutative algebra
交换代数中的组合研究
  • 批准号:
    RGPIN-2014-04392
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
  • 批准号:
    DGECR-2021-00010
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Launch Supplement
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
  • 批准号:
    RGPIN-2021-02391
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了