Combinatorial algebra: identities, actions and gradings
组合代数:恒等式、动作和分级
基本信息
- 批准号:RGPIN-2017-04631
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
First posed early in the 20th century, the Burnside Problem for groups asked: is every finitely generated periodic group finite? The Kurosh-Levitzki Problem is an algebraic analogue: is every finitely generated algebraic algebra finite-dimensional? Counterexamples were first constructed by Golod and Shafarevich in the 1960's. It was natural, therefore, to reformulate these problems with additional hypotheses in order to obtain positive solutions. Kaplansky more-or-less invented the field of polynomial identity algebras in order to give his best possible solution to this problem. Zelmanov won the Fields Medal in 1994 for his proof that every finitely generated residually finite group is finite, thereby solving the so-called Restricted Burnside Problem for groups. In order to do this, he gave first a positive solution to the Kurosh-Levtzki Problem for Lie algebras of a certain type. These amazing results, together with the powerful theory developed in order to prove them, have inspired my own research program for over twenty-five years.
Studying problems of so-called Burnside-type has always been at the core of my research program. These sorts of problems occur naturally in all areas of algebra: group theory and associative algebra, as well as nonassociative algebra, like Lie algebra and Jordan algebra. The idea is to deduce global phenomena from what appears on the surface to be weak local conditions. For example, I investigate when global laws - namely, polynomial identities - can be deduced to hold in an algebra knowing only that a smaller, weaker, collection of relations hold among a few elements taken at a time.
My current Proposal has two key themes. The first theme addresses the polynomial identities of associative and Lie algebras with a given "hypomorphic" action. Hypomorphic actions include gradings by groups, Hopf algebra actions, actions by involutions, actions by derivations and anti-derivations, and the left regular action of an algebra on itself. I seek to extend and unify a series key results from PI-theory by proving that if such algebras satisfy an identity involving the action, then it actually satisfies an ordinary polynomial identity. In fact, I conjecture that one only needs relations involving the action of bounded length in order to conclude such a result.
The second theme of my Proposal addresses the verbal subspaces of an algebra. A "verbal" subspace is the subspace generated by all the values a polynomial in an algebra. Apart from a few very special polynomials, this is a completely new area of investigation in noncommutative PI-theory. One of the first problems under consideration asks: if the verbal subspace is finite-dimensional, does it follow that the verbal subalgebra and verbal ideal generated by the verbal subspace is also finite-dimensional? There is an interesting dual to every verbal subspace: the "marginal" subspace generated by the "zeros" of a polynomial.
伯恩赛德问题最早提出于20世纪初,当时群的问题是:每个有限生成的周期群都是有限的吗?Kurosh-Levitzki问题是一个代数类比:每个有限生成的代数代数都是有限维的吗?反例最早是由戈洛德和沙法雷维奇在20世纪60年代的S构造的。因此,为了获得正解,用额外的假设重新表述这些问题是很自然的。卡普兰斯基或多或少地发明了多项式单位代数领域,以便给出这个问题的最佳可能的解决方案。1994年,Zelmanov因证明了每个有限生成的剩余有限群是有限的,从而解决了群的所谓受限Burnside问题而获得了菲尔兹奖。为此,他首先给出了某类李代数的Kurosh-Levtzki问题的一个正解。这些令人惊叹的结果,加上为证明它们而开发的强大理论,启发了我25年多来的研究计划。
研究所谓的伯恩赛德类型的问题一直是我研究计划的核心。这类问题自然而然地出现在代数的所有领域:群论和结合代数,以及非结合代数,如李代数和乔丹代数。其想法是从表面上看是微弱的局部条件来推断全球现象。例如,我调查了在一个代数中什么时候可以推导出全局定律--即多项式恒等式--在知道一次只有几个元素之间存在更小、更弱的关系集合的情况下才能成立。
我目前的提议有两个关键主题。第一个主题讨论结合代数和李代数的多项式恒等式以及给定的“亚纯”作用。亚纯作用包括群分次作用、Hopf代数作用、对合作用、导子作用和反导子作用以及代数自身的左正则作用。我试图推广和统一PI理论的一系列关键结果,证明了如果这种代数满足一个涉及动作的恒等式,那么它实际上满足一个普通的多项式恒等式。事实上,我猜测,一个人只需要涉及有限长度的动作的关系就可以得出这样的结果。
我的提议的第二个主题涉及到代数的语义子空间。“动词”子空间是由代数中的一个多项式的所有值生成的子空间。除了几个非常特殊的多项式外,这是非对易PI-理论的一个全新的研究领域。首先考虑的问题之一是:如果动词子空间是有限维的,那么由动词子空间生成的动词子代数和语言理想也是有限维的吗?每个动词子空间都有一个有趣的对偶:由多项式的“零”生成的“边缘”子空间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Riley, David其他文献
Life cycle assessment of exterior window shadings in residential buildings in different climate zones
- DOI:
10.1016/j.buildenv.2015.03.038 - 发表时间:
2015-08-01 - 期刊:
- 影响因子:7.4
- 作者:
Babaizadeh, Hamed;Haghighi, Nasim;Riley, David - 通讯作者:
Riley, David
Improving Fellowship Training in Microsurgery: A Threshold Concepts Perspective on the Curricula of Fellowship Programs
- DOI:
10.1055/s-0035-1558461 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:2.1
- 作者:
Evgeniou, Evgenios;Tsironi, Maria;Riley, David - 通讯作者:
Riley, David
A Maximum Dose Bioassay to Assess Efficacy of Key Insecticides Against Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae)
- DOI:
10.1093/jee/toab016 - 发表时间:
2021-02-13 - 期刊:
- 影响因子:2.2
- 作者:
De Marchi, Bruno Rossitto;Smith, Hugh;Riley, David - 通讯作者:
Riley, David
Whitefly Population Dynamics and Evaluation of Whitefly-Transmitted Tomato Yellow Leaf Curl Virus (TYLCV)-Resistant Tomato Genotypes as Whitefly and TYLCV Reservoirs
- DOI:
10.1603/ec11402 - 发表时间:
2012-08-01 - 期刊:
- 影响因子:2.2
- 作者:
Srinivasan, Rajagopalbabu;Riley, David;Adkins, Scott - 通讯作者:
Adkins, Scott
The CARE Guidelines: Consensus-based Clinical Case Report Guideline Development
- DOI:
10.3109/19390211.2013.830679 - 发表时间:
2013-12-01 - 期刊:
- 影响因子:2.5
- 作者:
Gagnier, Joel J.;Kienle, Gunver;Riley, David - 通讯作者:
Riley, David
Riley, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Riley, David', 18)}}的其他基金
Combinatorial algebra: identities, actions and gradings
组合代数:恒等式、动作和分级
- 批准号:
RGPIN-2017-04631 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial algebra: identities, actions and gradings
组合代数:恒等式、动作和分级
- 批准号:
RGPIN-2017-04631 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial algebra: identities, actions and gradings
组合代数:恒等式、动作和分级
- 批准号:
RGPIN-2017-04631 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial algebra: identities, actions and gradings
组合代数:恒等式、动作和分级
- 批准号:
RGPIN-2017-04631 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
- 批准号:
227348-2009 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
- 批准号:
227348-2009 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
- 批准号:
227348-2009 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
- 批准号:
227348-2009 - 财政年份:2010
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
- 批准号:
227348-2009 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
- 批准号:
227348-2004 - 财政年份:2008
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
李代数的权表示
- 批准号:10371120
- 批准年份:2003
- 资助金额:13.0 万元
- 项目类别:面上项目
相似海外基金
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
- 批准号:
2342254 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
- 批准号:
2337178 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant