Combinatorial algebra: identities, actions and gradings

组合代数:恒等式、动作和分级

基本信息

  • 批准号:
    RGPIN-2017-04631
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

First posed early in the 20th century, the Burnside Problem for groups asked: is every finitely generated periodic group finite? The Kurosh-Levitzki Problem is an algebraic analogue: is every finitely generated algebraic algebra finite-dimensional? Counterexamples were first constructed by Golod and Shafarevich in the 1960's. It was natural, therefore, to reformulate these problems with additional hypotheses in order to obtain positive solutions. Kaplansky more-or-less invented the field of polynomial identity algebras in order to give his best possible solution to this problem. Zelmanov won the Fields Medal in 1994 for his proof that every finitely generated residually finite group is finite, thereby solving the so-called Restricted Burnside Problem for groups. In order to do this, he gave first a positive solution to the Kurosh-Levtzki Problem for Lie algebras of a certain type. These amazing results, together with the powerful theory developed in order to prove them, have inspired my own research program for over twenty-five years.******Studying problems of so-called Burnside-type has always been at the core of my research program. These sorts of problems occur naturally in all areas of algebra: group theory and associative algebra, as well as nonassociative algebra, like Lie algebra and Jordan algebra. The idea is to deduce global phenomena from what appears on the surface to be weak local conditions. For example, I investigate when global laws - namely, polynomial identities - can be deduced to hold in an algebra knowing only that a smaller, weaker, collection of relations hold among a few elements taken at a time.******My current Proposal has two key themes. The first theme addresses the polynomial identities of associative and Lie algebras with a given "hypomorphic" action. Hypomorphic actions include gradings by groups, Hopf algebra actions, actions by involutions, actions by derivations and anti-derivations, and the left regular action of an algebra on itself. I seek to extend and unify a series key results from PI-theory by proving that if such algebras satisfy an identity involving the action, then it actually satisfies an ordinary polynomial identity. In fact, I conjecture that one only needs relations involving the action of bounded length in order to conclude such a result.******The second theme of my Proposal addresses the verbal subspaces of an algebra. A "verbal" subspace is the subspace generated by all the values a polynomial in an algebra. Apart from a few very special polynomials, this is a completely new area of investigation in noncommutative PI-theory. One of the first problems under consideration asks: if the verbal subspace is finite-dimensional, does it follow that the verbal subalgebra and verbal ideal generated by the verbal subspace is also finite-dimensional? There is an interesting dual to every verbal subspace: the "marginal" subspace generated by the "zeros" of a polynomial. *****
伯恩赛德问题最早提出于世纪,它提出了这样一个问题:是否每个周期群都是有限的?Kurosh-Levitzki问题是一个代数类似问题:是否每个生成的代数代数都是有限维的?反例最早是由Golod和Shafarevich在20世纪60年代提出的。因此,很自然地,为了获得积极的解决办法,需要用额外的假设重新表述这些问题。Kaplansky或多或少地发明了多项式恒等代数领域,以给出他对这个问题的最佳解决方案。Zelmanov赢得了菲尔兹奖于1994年,他的证明,每一个生成的剩余有限群是有限的,从而解决了所谓的限制伯恩赛德问题的群体。为了做到这一点,他首先给出了一个积极的解决方案Kurosh-Levtzki问题的李代数的某种类型。这些惊人的结果,以及为了证明它们而发展的强有力的理论,激励了我自己超过25年的研究计划。研究所谓的伯恩赛德型问题一直是我研究计划的核心。这类问题在代数的所有领域都很自然地出现:群论和结合代数,以及非结合代数,如李代数和约当代数。这个想法是从表面上看起来是弱局部条件的东西推导出全局现象。例如,我研究了当一个代数只知道一个更小的、更弱的关系集合在一次取的几个元素之间成立时,什么时候可以推导出全局定律--即多项式恒等式--在代数中成立。我目前的建议有两个关键主题。第一个主题是讨论结合代数和李代数的多项式恒等式,它们具有给定的“亚纯”作用。亚纯作用包括群的分次、霍普夫代数作用、对合作用、导子和反导子作用以及代数在自身上的左正则作用。 我试图通过证明如果这样的代数满足一个涉及动作的恒等式,那么它实际上满足一个普通的多项式恒等式,来扩展和统一PI理论的一系列关键结果。事实上,我猜想,为了得出这样一个结果,人们只需要涉及有界长度作用的关系。我的建议的第二个主题涉及代数的动词子空间。一个“动词”子空间是由代数中多项式的所有值生成的子空间。除了几个非常特殊的多项式,这是一个全新的领域的调查非交换PI理论。首先考虑的问题之一是:如果动词子空间是有限维的,那么由动词子空间生成的动词子代数和动词理想也是有限维的吗?每个言语子空间都有一个有趣的对偶:由多项式的“零”生成的“边缘”子空间。*****

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Riley, David其他文献

Life cycle assessment of exterior window shadings in residential buildings in different climate zones
  • DOI:
    10.1016/j.buildenv.2015.03.038
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Babaizadeh, Hamed;Haghighi, Nasim;Riley, David
  • 通讯作者:
    Riley, David
Improving Fellowship Training in Microsurgery: A Threshold Concepts Perspective on the Curricula of Fellowship Programs
  • DOI:
    10.1055/s-0035-1558461
  • 发表时间:
    2015-10-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Evgeniou, Evgenios;Tsironi, Maria;Riley, David
  • 通讯作者:
    Riley, David
A Maximum Dose Bioassay to Assess Efficacy of Key Insecticides Against Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae)
  • DOI:
    10.1093/jee/toab016
  • 发表时间:
    2021-02-13
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    De Marchi, Bruno Rossitto;Smith, Hugh;Riley, David
  • 通讯作者:
    Riley, David
Whitefly Population Dynamics and Evaluation of Whitefly-Transmitted Tomato Yellow Leaf Curl Virus (TYLCV)-Resistant Tomato Genotypes as Whitefly and TYLCV Reservoirs
  • DOI:
    10.1603/ec11402
  • 发表时间:
    2012-08-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Srinivasan, Rajagopalbabu;Riley, David;Adkins, Scott
  • 通讯作者:
    Adkins, Scott
The CARE Guidelines: Consensus-based Clinical Case Report Guideline Development
  • DOI:
    10.3109/19390211.2013.830679
  • 发表时间:
    2013-12-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Gagnier, Joel J.;Kienle, Gunver;Riley, David
  • 通讯作者:
    Riley, David

Riley, David的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Riley, David', 18)}}的其他基金

Combinatorial algebra: identities, actions and gradings
组合代数:恒等式、动作和分级
  • 批准号:
    RGPIN-2017-04631
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial algebra: identities, actions and gradings
组合代数:恒等式、动作和分级
  • 批准号:
    RGPIN-2017-04631
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial algebra: identities, actions and gradings
组合代数:恒等式、动作和分级
  • 批准号:
    RGPIN-2017-04631
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial algebra: identities, actions and gradings
组合代数:恒等式、动作和分级
  • 批准号:
    RGPIN-2017-04631
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
  • 批准号:
    227348-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
  • 批准号:
    227348-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
  • 批准号:
    227348-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
  • 批准号:
    227348-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
  • 批准号:
    227348-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Algebra
组合代数
  • 批准号:
    227348-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

李代数的权表示
  • 批准号:
    10371120
  • 批准年份:
    2003
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
  • 批准号:
    2349684
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
  • 批准号:
    2342254
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
  • 批准号:
    2337178
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
  • 批准号:
    2416063
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
  • 批准号:
    EP/Y030990/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了