Birational invariants of algebraic groups and algebraic tori with finite group actions

具有有限群作用的代数群和代数环的双有理不变量

基本信息

  • 批准号:
    229820-2010
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2010
  • 资助国家:
    加拿大
  • 起止时间:
    2010-01-01 至 2011-12-31
  • 项目状态:
    已结题

项目摘要

A classical but notoriously difficult problem in algebraic geometry is to classify algebraic varieties up to birational isomorphism - a natural equivalence relation on the set of algebraic varieties. Rational algebraic varieties form a distinguished class under this equivalence relation. The simplest known rational varieties are the linear varieties and the algebraic tori. There are natural actions of finite groups on linear varieties and algebraic tori coming from representations of the groups. One may ask when the orbit space of a linear variety or algebraic tori under a finite group action is rational. This question was first posed by Emmy Noether while she was doing work on the inverse Galois problem. One may also compare an algebraic torus with a finite group action to the associated linear variety with a finite group action by asking when the two are birationally isomorphic with a birational isomorphism which is equivariant with respect to the finite group action. This question of equivariant birational linearisation is related to the question of finding conjugacy classes of finite subgroups in the classical Cremona group - the group of birational isomorphisms of projective space. It is also related to the classical problem of determining whether an algebraic group is Cayley - or equivariantly birationally isomorphic to its Lie algebra - a problem first studied by Cayley. I previously did joint work on this problem with Vladimir Popov and Zinovy Reichstein. Among other things, we determined the set of simple algebraic groups over an algebraically closed field which are Cayley. I study analogues and generalisations of the rationality problem for algebraic tori under finite group actions and also the equivariant birational linearisation problem.
代数几何中一个经典但出了名的困难问题是对代数簇进行分类,直到二元同构-代数簇集合上的一种自然等价关系。在这种等价关系下,有理代数簇形成了一个独特的类。已知的最简单的有理簇是线性簇和代数环面。有限群在线性簇和代数环面上的自然作用来自于群的表示。人们可能会问,在有限群作用下,线性簇或代数环面的轨道空间何时是有理的。这个问题最早是由艾米·诺特在研究伽罗瓦逆问题时提出的。人们也可以通过询问具有有限群作用的代数环面和具有有限群作用的相关线性簇何时与关于有限群作用等变的二元同构进行比较。这个等变双子线性化问题涉及到在经典Cremona群-射影空间的双子同构群中寻找有限子群的共轭类的问题。它还与确定一个代数群是否为Cayley--或与其李代数同构--的经典问题有关,这是由Cayley最先研究的问题。我之前曾与弗拉基米尔·波波夫和齐诺维·赖希斯坦就这个问题进行过联合研究。其中,我们确定了代数闭域上的Cayley单代数群的集合。我研究了有限群作用下代数环面的合理性问题以及等变双线性问题的类比和推广。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lemire, Nicole其他文献

Lemire, Nicole的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lemire, Nicole', 18)}}的其他基金

Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
  • 批准号:
    RGPIN-2016-05215
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
  • 批准号:
    RGPIN-2016-05215
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
  • 批准号:
    RGPIN-2016-05215
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
  • 批准号:
    RGPIN-2016-05215
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
  • 批准号:
    RGPIN-2016-05215
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Birational invariants of algebraic groups and algebraic tori with finite group actions
具有有限群作用的代数群和代数环的双有理不变量
  • 批准号:
    229820-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Birational invariants of algebraic groups and algebraic tori with finite group actions
具有有限群作用的代数群和代数环的双有理不变量
  • 批准号:
    229820-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Birational invariants of algebraic groups and algebraic tori with finite group actions
具有有限群作用的代数群和代数环的双有理不变量
  • 批准号:
    229820-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Birational invariants of algebraic groups and algebraic tori with finite group actions
具有有限群作用的代数群和代数环的双有理不变量
  • 批准号:
    229820-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Interactions of representation theory and cohomology with applications to invariant theory and galois theory
表示论和上同调的相互作用及其在不变理论和伽罗瓦理论中的应用
  • 批准号:
    229820-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

图拓扑指数及相关问题的研究
  • 批准号:
    2020JJ4423
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Knot invariants and algebraic combinatorics
结不变量和代数组合
  • 批准号:
    23K03108
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fusion of enumerative and algebraic geometry and exploration of quasi-geometric invariants
枚举几何与代数几何的融合以及准几何不变量的探索
  • 批准号:
    23K17298
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Algebraic Invariants for Phylogenetic Network Inference
系统发育网络推理的代数不变量
  • 批准号:
    EP/W007134/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
Computing algebraic invariants of symbolic dynamical systems
计算符号动力系统的代数不变量
  • 批准号:
    EP/V007459/2
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
Computing algebraic invariants of symbolic dynamical systems
计算符号动力系统的代数不变量
  • 批准号:
    EP/V007459/1
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
Invariants for algebraic group actions
代数群作用的不变量
  • 批准号:
    2441842
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Studentship
Research of hierarchy structures of spatial graphs and algebraic invariants
空间图层次结构与代数不变量研究
  • 批准号:
    19K03500
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Derived Categories and Other Invariants of Algebraic Varieties
代数簇的派生范畴和其他不变量
  • 批准号:
    1902251
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
Algebraic invariants of spaces with group action
群作用空间的代数不变量
  • 批准号:
    2274577
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Studentship
Representations and invariants of algebraic groups
代数群的表示和不变量
  • 批准号:
    2103094
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了