Algorithms and lower bounds for sublinear processing of long sequences and large data
长序列和大数据亚线性处理的算法和下界
基本信息
- 批准号:298343-2009
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2010
- 资助国家:加拿大
- 起止时间:2010-01-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As more and more applications are generating and storing massive amounts of data, the processing of large data is becoming crucial in many fields. In this proposal we are interested in processing large amounts of data in the presence of resource constraints. In particular, we would like to develop algorithms in the property testing, streaming, and sensor network aggregation models, allowing time and/or space sublinear in the size of the input. Clearly, such tight restrictions imply that the solutions provided by our algorithms cannot be fully accurate in many cases; one of our goals is to explore the tradeoff between accuracy and efficiency in these models. We will focus on problems related to properties of sequences, but will explore other areas as we develop more techniques.
随着越来越多的应用程序产生和存储大量数据,大数据的处理在许多领域变得至关重要。在这个建议中,我们感兴趣的是在存在资源限制的情况下处理大量数据。特别是,我们希望在属性测试、流和传感器网络聚合模型中开发算法,允许输入大小的时间和/或空间亚线性。显然,如此严格的限制意味着我们的算法提供的解决方案在许多情况下不能完全准确;我们的目标之一是探索这些模型中准确性和效率之间的权衡。我们将重点关注与序列性质相关的问题,但随着技术的发展,我们将探索其他领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ergun, AyseFunda其他文献
Ergun, AyseFunda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ergun, AyseFunda', 18)}}的其他基金
Streaming Algorithms for Structural Trends
结构趋势的流算法
- 批准号:
RGPIN-2015-04465 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Streaming Algorithms for Structural Trends
结构趋势的流算法
- 批准号:
477874-2015 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Algorithms and lower bounds for sublinear processing of long sequences and large data
长序列和大数据亚线性处理的算法和下界
- 批准号:
298343-2009 - 财政年份:2014
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and lower bounds for sublinear processing of long sequences and large data
长序列和大数据亚线性处理的算法和下界
- 批准号:
298343-2009 - 财政年份:2012
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and lower bounds for sublinear processing of long sequences and large data
长序列和大数据亚线性处理的算法和下界
- 批准号:
298343-2009 - 财政年份:2011
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and lower bounds for sublinear processing of long sequences and large data
长序列和大数据亚线性处理的算法和下界
- 批准号:
298343-2009 - 财政年份:2009
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms for property testing of massive data
海量数据属性测试的高效算法
- 批准号:
298343-2004 - 财政年份:2008
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms for property testing of massive data
海量数据属性测试的高效算法
- 批准号:
298343-2004 - 财政年份:2007
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms for property testing of massive data
海量数据属性测试的高效算法
- 批准号:
298343-2004 - 财政年份:2006
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms for property testing of massive data
海量数据属性测试的高效算法
- 批准号:
298343-2004 - 财政年份:2005
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Lower bounds, meta-algorithms, and pseudorandomness
下界、元算法和伪随机性
- 批准号:
RGPIN-2019-05543 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and lower bounds for monotone dualization and tensor decomposition of constraint satisfaction hypergraphs
约束满足超图的单调对偶化和张量分解的算法和下界
- 批准号:
576241-2022 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Alliance Grants
Lower bounds, meta-algorithms, and pseudorandomness
下界、元算法和伪随机性
- 批准号:
RGPIN-2019-05543 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
AF: Small: Lower Bounds in Complexity Theory Via Algorithms
AF:小:通过算法实现复杂性理论的下界
- 批准号:
2127597 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Algorithms and Lower Bounds for Problems in the Data Streaming Model
数据流模型中问题的算法和下界
- 批准号:
2445606 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Studentship
Lower bounds, meta-algorithms, and pseudorandomness
下界、元算法和伪随机性
- 批准号:
RGPIN-2019-05543 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Lower bounds, meta-algorithms, and pseudorandomness
下界、元算法和伪随机性
- 批准号:
RGPIN-2019-05543 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
On Exact Algorithms for Branching Program Satisfiability Problems by Approaches for Proving Lower Bounds
基于证明下界的方法解决分支程序可满足性问题的精确算法
- 批准号:
18K18003 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Meta-Algorithms versus Circuit Lower Bounds
元算法与电路下界
- 批准号:
298363-2012 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
CRII: RI: Memory-efficient Representations for Robot Tasks: Lower Bounds and Scalable Algorithms
CRII:RI:机器人任务的内存高效表示:下界和可扩展算法
- 批准号:
1755038 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant