Global and blowup solutions for quasilinear parabolic equations and their numerical computations

拟线性抛物型方程的全局解和爆炸解及其数值计算

基本信息

  • 批准号:
    251200-2008
  • 负责人:
  • 金额:
    $ 0.87万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2011
  • 资助国家:
    加拿大
  • 起止时间:
    2011-01-01 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

Quasilinear degenerate parabolic equations have many applications in Physics, Chemistry, Biology and image processing. These equations involve a degenerate or singular diffusion term and some kinds of blowup properties which create many challenging problems in global, blowup and numerical solutions. The objectives of this research program involve using a new functional method and moving mesh methods to investigate the properties of global and blowup solutions both theoretically and numerically. The expected results will include the following:
拟线性退化抛物型方程在物理、化学、生物和图像处理等领域有着广泛的应用。这些方程涉及退化或奇异扩散项和某些爆破性质,这在整体解、爆破解和数值解中产生了许多具有挑战性的问题。这个研究项目的目标包括使用一种新的泛函方法和移动网格方法来从理论和数值上研究整体解和爆破解的性质。预期结果将包括以下内容:

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chen, Shaohua(George)其他文献

Chen, Shaohua(George)的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chen, Shaohua(George)', 18)}}的其他基金

Global and blowup solutions for quasilinear parabolic equations and their numerical computations
拟线性抛物型方程的全局解和爆炸解及其数值计算
  • 批准号:
    251200-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Global and blowup solutions for quasilinear parabolic equations and their numerical computations
拟线性抛物型方程的全局解和爆炸解及其数值计算
  • 批准号:
    251200-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Global and blowup solutions for quasilinear parabolic equations and their numerical computations
拟线性抛物型方程的全局解和爆炸解及其数值计算
  • 批准号:
    251200-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Global and blowup solutions for quasilinear parabolic equations and their numerical computations
拟线性抛物型方程的全局解和爆炸解及其数值计算
  • 批准号:
    251200-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Blowup solutions for nonlinear evolution equations and their numerical computations with moving mesh methods
非线性演化方程的爆炸解及其动网格法数值计算
  • 批准号:
    251200-2002
  • 财政年份:
    2006
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

陈-阮上同调若干问题研究
  • 批准号:
    11226034
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
一类非线性Schrodinger方程解的存在性及其动力系统
  • 批准号:
    11101356
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    571735-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 0.87万
  • 项目类别:
    University Undergraduate Student Research Awards
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2022
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    561540-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 0.87万
  • 项目类别:
    University Undergraduate Student Research Awards
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2021
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2020
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2019
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2018
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2017
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2016
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物型系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2015
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了