Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations

非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算

基本信息

  • 批准号:
    RGPIN-2014-03857
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The quasi-linear parabolic systems have many applications in Physics, Chemistry, Biology and image processing. Those systems involve degenerate or singular diffusion terms and some kinds of blowup properties which cause many challenging problems for global, blowup and numerical solutions. The objectives of this research program are using a new functional method and moving mesh methods to investigate properties of global and blowup solutions both theoretically and numerically, including elliptic systems related to steady states of parabolic systems. The expected results will include:**1. Introduce a new functional method to discuss global and blowup solutions for systems of porous medium model in physics, Chemotaxis model in chemistry and mutualistic model in ecology. Also study the existence, uniqueness and stability of positive steady states to the systems.**2. Investigate the existence of multi positive solutions of some elliptic systems and bifurcation curves. **3. Modify the existing algorithms of moving mesh methods and other adaptive grid methods to numerically solve some complicated equations or systems, such as equations whose solutions blow up at space infinity. Also develop a moving mesh scheme for Schrodinger equations with conservative mass and energy and other equations whose domains are unbounded. **4. Deal with a class of more general quasi-linear parabolic systems to find sufficient conditions on the initial conditions for the global existence and blowup properties both theoretically and numerically, as well as convergence to steady states.
拟线性抛物型方程组在物理、化学、生物和图像处理等领域有着广泛的应用。这类方程组包含退化或奇异扩散项以及某些爆破性质,给整体解、爆破解和数值解带来了许多挑战性的问题。本研究计划的目标是使用一种新的功能方法和移动网格方法,从理论和数值上研究整体和爆破解决方案的性质,包括椭圆型系统相关的抛物型系统的稳定状态。预期成果包括:**1。介绍了一种新的泛函方法来讨论物理学中的多孔介质模型、化学中的趋化模型和生态学中的互惠模型的整体解和爆破解。并研究了系统正平衡态的存在性、唯一性和稳定性。2.研究一类椭圆型方程组和分歧曲线的多个正解的存在性。** 三.修改现有的移动网格方法和其他自适应网格方法的算法,数值求解一些复杂的方程或系统,如方程的解在空间无穷远爆破。对于具有守恒质量和能量的薛定谔方程以及其他区域无界的方程,也发展了一种移动网格格式。 ** 四、研究一类更一般的拟线性抛物方程组,在初始条件下,从理论上和数值上得到方程组解的整体存在性、爆破性以及稳定性的充分条件.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chen, Shaohua其他文献

Clinical predictor of postoperative hyperkalemia after parathyroidectomy in patients with hemodialysis
  • DOI:
    10.1016/j.ijsu.2018.03.003
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
    15.3
  • 作者:
    Li, Sijia;Liu, Shuangxin;Chen, Shaohua
  • 通讯作者:
    Chen, Shaohua
Novel inverse finite-element formulation for reconstruction of relative local stiffness in heterogeneous extra-cellular matrix and traction forces on active cells
  • DOI:
    10.1088/1478-3975/ab0463
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Chen, Shaohua;Xu, Wenxiang;Jiao, Yang
  • 通讯作者:
    Jiao, Yang
Probing End-to-End Cyclization beyond Willemski and Fixman
  • DOI:
    10.1021/jp109528h
  • 发表时间:
    2011-04-07
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Chen, Shaohua;Duhamel, Jean;Winnik, Mitchell A.
  • 通讯作者:
    Winnik, Mitchell A.
Expression feature of CD3, FcεRIγ, and Zap-70 in patients with chronic lymphocytic leukemia
  • DOI:
    10.1179/102453312x13221316477895
  • 发表时间:
    2012-03-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Huang, Le;Chen, Shaohua;Li, Yangqiu
  • 通讯作者:
    Li, Yangqiu
Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway
  • DOI:
    10.1016/j.biortech.2013.01.002
  • 发表时间:
    2013-03-01
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Chen, Shaohua;Dong, Yi Hu;Zhang, Lian-Hui
  • 通讯作者:
    Zhang, Lian-Hui

Chen, Shaohua的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chen, Shaohua', 18)}}的其他基金

Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization and Simulation Studies of a Production System for Ventilators to Mitigate Challenges of COVID-19 Pandemic
呼吸机生产系统的优化和模拟研究,以缓解 COVID-19 大流行的挑战
  • 批准号:
    555178-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Alliance Grants
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物型系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物型系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Blowup solutions for nonlinear evolution equations and their numerical computations with moving mesh methods
非线性演化方程的爆炸解及其动网格法数值计算
  • 批准号:
    251200-2002
  • 财政年份:
    2005
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

陈-阮上同调若干问题研究
  • 批准号:
    11226034
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
一类非线性Schrodinger方程解的存在性及其动力系统
  • 批准号:
    11101356
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    571735-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    University Undergraduate Student Research Awards
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    561540-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    University Undergraduate Student Research Awards
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
On the Lefschetz property of complete intersections
关于完全交集的 Lefschetz 性质
  • 批准号:
    20K03508
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on blowup phenomena for Shcr\"odinger equations with non-gauge invariant power type nonlinearities
非规范不变幂型非线性Shcr"odinger方程的爆炸现象研究
  • 批准号:
    20K14337
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Blowup phenomena in chemotaxis system
趋化系统中的爆炸现象
  • 批准号:
    20H01814
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on Local Cohomology, Derivations, Integral Dependence, and Blowup Algebras
局部上同调、导数、积分相关性和爆炸代数的研究
  • 批准号:
    1902033
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Study of blowup phenomena for partial differential equations with non-gauge invariant power type nonlinearities
非规范不变幂型非线性偏微分方程的爆炸现象研究
  • 批准号:
    19J00334
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了