Electrical and mechanically robust, porous, ultra-low dielectric constant materials
电气和机械坚固、多孔、超低介电常数材料
基本信息
- 批准号:355552-2008
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2011
- 资助国家:加拿大
- 起止时间:2011-01-01 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the increasing demand of integrated circuits (IC) computational speed performance, new nano-fabrication techniques and novel materials are needed. One of the most noticeable recent developments in the IC industry is the deployment of copper interconnects and ultra-low dielectric constant (ULK) materials in back-end-of-line structures. Interconnect lines are nanometer-scale metal wires used to connect transistors together. To avoid electrical shorts between these nano-wires and to provide mechanical support for the IC devices, ULK materials are used to insulate these metal wires. The migration of copper/ULK from the out-dated aluminum/silicon dioxide technology is to reduce signal delay by the resistances of interconnect line and the capacitance cross-talks between them. In the future, IC technology with the characteristic transistor gate length smaller than 22 nm (22 nm technology node) will consist of ULK materials with target dielectric constants less than 2.1 To achieve this objective, the ULK will be incorporated with nanometer-scale empty voids or pores. This new class of material is commonly referred to as porous-ULK and can be produced by using the porogen-subtraction method. Organic template agents (porogen) are introduced into the silicate matrix material by using the plasma-enhanced chemical vapor deposition (PECVD) techniques. They will be subsequently removed by a vaporization process using UV radiation at high temperature in an ultra-high-vacuum chamber. Depending on the amount of porogen used during the PECVD process, the final porosity in the porous-ULK film can be in the range of 20% to 40%. However, this technique has drawbacks which limit its application. This includes the difficulty of producing pores with diameters smaller than 2 nm which is the 22 nm technology node requirement. The UV cure process may increase the dielectric constant of the porous-ULK by modifying its molecular structures. Finally, as expected, the introduction of porosity into the silicate film reduces its mechanical and fracture strength. It is the goal of this research to understand the causes of these degradations and provide solutions by inventing new fabrication techniques.
随着对集成电路(IC)计算速度性能的需求不断增加,需要新的纳米制造技术和新型材料。 IC 行业最近最引人注目的发展之一是在后端结构中部署铜互连和超低介电常数 (ULK) 材料。互连线是用于将晶体管连接在一起的纳米级金属线。 为了避免这些纳米线之间发生电短路并为 IC 器件提供机械支撑,使用 ULK 材料来绝缘这些金属线。从过时的铝/二氧化硅技术迁移到铜/ULK是为了通过互连线的电阻和互连线之间的电容串扰来减少信号延迟。未来,特征晶体管栅极长度小于22纳米(22纳米技术节点)的IC技术将由目标介电常数小于2.1的ULK材料组成。为了实现这一目标,ULK将融入纳米级的空洞或孔隙。这种新型材料通常被称为多孔 ULK,可以通过使用致孔剂扣除方法来生产。通过使用等离子体增强化学气相沉积 (PECVD) 技术将有机模板剂(致孔剂)引入硅酸盐基质材料中。随后将在超高真空室中使用高温紫外线辐射通过汽化过程去除它们。根据 PECVD 过程中使用的致孔剂的量,多孔 ULK 薄膜的最终孔隙率可以在 20% 至 40% 的范围内。然而,该技术存在缺陷,限制了其应用。这包括难以产生直径小于2纳米的孔隙,这是22纳米技术节点的要求。 UV固化过程可以通过改变多孔-ULK的分子结构来增加其介电常数。最后,正如预期的那样,硅酸盐薄膜中引入孔隙会降低其机械强度和断裂强度。这项研究的目标是了解这些退化的原因并通过发明新的制造技术提供解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tsui, Ting其他文献
Tsui, Ting的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tsui, Ting', 18)}}的其他基金
Fabricating bio-nanocomposites using integrated circuit-based advanced manufacturing techniques
使用基于集成电路的先进制造技术制造生物纳米复合材料
- 批准号:
RGPIN-2019-04935 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Fabricating bio-nanocomposites using integrated circuit-based advanced manufacturing techniques
使用基于集成电路的先进制造技术制造生物纳米复合材料
- 批准号:
RGPIN-2019-04935 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Fabricating bio-nanocomposites using integrated circuit-based advanced manufacturing techniques
使用基于集成电路的先进制造技术制造生物纳米复合材料
- 批准号:
RGPIN-2019-04935 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Fabricating bio-nanocomposites using integrated circuit-based advanced manufacturing techniques
使用基于集成电路的先进制造技术制造生物纳米复合材料
- 批准号:
RGPIN-2019-04935 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
FABRICATIONS AND MECHANICAL PROPERTIES OF SUPER STRONG FUNCTIONAL NANOSTRUCTURES
超强功能纳米结构的制备和力学性能
- 批准号:
355552-2012 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
FABRICATIONS AND MECHANICAL PROPERTIES OF SUPER STRONG FUNCTIONAL NANOSTRUCTURES
超强功能纳米结构的制备和力学性能
- 批准号:
355552-2012 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
FABRICATIONS AND MECHANICAL PROPERTIES OF SUPER STRONG FUNCTIONAL NANOSTRUCTURES
超强功能纳米结构的制备和力学性能
- 批准号:
355552-2012 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
FABRICATIONS AND MECHANICAL PROPERTIES OF SUPER STRONG FUNCTIONAL NANOSTRUCTURES
超强功能纳米结构的制备和力学性能
- 批准号:
355552-2012 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
FABRICATIONS AND MECHANICAL PROPERTIES OF SUPER STRONG FUNCTIONAL NANOSTRUCTURES
超强功能纳米结构的制备和力学性能
- 批准号:
355552-2012 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
FABRICATIONS AND MECHANICAL PROPERTIES OF SUPER STRONG FUNCTIONAL NANOSTRUCTURES
超强功能纳米结构的制备和力学性能
- 批准号:
355552-2012 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
mechanically robust supramolecular polymer
机械坚固的超分子聚合物
- 批准号:
22KJ0970 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Uniquely high conversion and mechanically robust composite restorative materials for functionally elevated performance
独特的高转化率和机械坚固的复合修复材料,可提高功能性能
- 批准号:
10646845 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
CAREER: Multiscale Mechanics of Bio-based, Reprocessable, Recyclable and Mechanically Robust Polymer Composites
职业:生物基、可再加工、可回收和机械鲁棒性聚合物复合材料的多尺度力学
- 批准号:
2302981 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
CAREER: Multiscale Mechanics of Bio-based, Reprocessable, Recyclable and Mechanically Robust Polymer Composites
职业:生物基、可再加工、可回收和机械鲁棒性聚合物复合材料的多尺度力学
- 批准号:
2145086 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Controllable 2- and 3D Assembly of Mechanically Robust Skin Tissue Via Long Term Expression of DNA on Cell Membranes
通过细胞膜上 DNA 的长期表达实现机械鲁棒性皮肤组织的可控 2 和 3D 组装
- 批准号:
10328551 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
STTR Phase I: Continuous Manufacturing of Mechanically-Robust, Superinsulating Aerogel Monoliths and Thin Films via a New Ambient-Pressure Freeze Drying Technology
STTR 第一阶段:通过新的常压冷冻干燥技术连续制造机械强度高的超绝缘气凝胶整料和薄膜
- 批准号:
2014881 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Silk-Ti Technology: Combination of robust, tissue regenerative cartilage and bone repair materials for development of mechanically functional, biologically integrating osteochondral implan
Silk-Ti 技术:将坚固的组织再生软骨和骨修复材料相结合,用于开发具有机械功能、生物集成的骨软骨植入物
- 批准号:
105743 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Study
Mechanically robust and thermally insulated cellulose aerogel for clothing application
用于服装应用的机械坚固且隔热的纤维素气凝胶
- 批准号:
533796-2018 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Engage Grants Program
General Strategies Toward Mechanically Robust Biobased Polymers and Composites
机械鲁棒性生物基聚合物和复合材料的一般策略
- 批准号:
1806792 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Additive Manufacturing of Mechanically Strong and Electrochemically Robust Porous Electrodes for Ultra-High Energy Density Batteries
GOALI/合作研究:用于超高能量密度电池的机械强度和电化学鲁棒性多孔电极的增材制造
- 批准号:
1747608 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant