FABRICATIONS AND MECHANICAL PROPERTIES OF SUPER STRONG FUNCTIONAL NANOSTRUCTURES
超强功能纳米结构的制备和力学性能
基本信息
- 批准号:355552-2012
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2012
- 资助国家:加拿大
- 起止时间:2012-01-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The functionality, lifetime, and commercial success of nanoelectronics ultimately depend on our ability to successfully design and engineer the mechanical properties of the small scale structures that comprise them. To that end, it is imperative to gain a fundamental understanding of the physical properties and reliability of nanoelectronics as a function of size in the sub-micron to nanometer scales. However, strengthening techniques that work well in bulk are often difficult to implement at the nanoscale level. For example, bulk nanocrystalline Ni specimens exhibit superior mechanical strength, but because of the grain boundary sliding, they soften when the sample is reduced to smaller than 100 nm. Conversely, well annealed single crystalline structures, which are soft in bulk, exhibit superior mechanical strength as the sample dimension decreases. Some proposed mechanisms recently suggested to explain this strength size effect include the dislocation starvation effect, stochastic behaviors, and nano-twin formations. These mechanism theories are unique to nanostructures; however, they are still in their infancy and need further development. This study has three objectives: 1) explore the alloying and precipitation effects on the mechanical properties of metallic nanostructures; 2) investigate the carbon nanotube-metal matrix nanocomposite mechanical deformation behaviors; and 3) develop guidelines to fabricate super-strong nanostructures. The proposed project will be conducted in our research facility using a state-of-the-art in-situ nanoindenter installed within a field-emission scanning electron microscope. This is believed to be the first and only in-situ nanoscale mechanical testing instrument in Canada, and one of only a few in the world. We anticipate that the proposal project will lead to an in-depth understanding of the solute/precipitation effect and the CNT influences on the strength of nanostructures, making it possible to develop structures that are strong and able to fulfill the functional behaviors.
纳米电子的功能、寿命和商业成功最终取决于我们成功地设计和设计构成它们的小规模结构的机械性能的能力。为此,必须从根本上了解在亚微米到纳米范围内纳米电子器件的物理特性和可靠性随尺寸的变化情况。然而,大量有效的强化技术往往很难在纳米级实施。例如,块体纳米晶镍样品表现出良好的机械强度,但由于晶界滑动,当样品还原到小于100 nm时,它们会变软。相反,随着样品尺寸的减小,经过良好退火的单晶结构,其体积较软,表现出更高的机械强度。最近提出的解释这种强度尺寸效应的一些机制包括位错饥饿效应、随机行为和纳米孪晶的形成。这些机制理论是纳米结构所独有的,但它们仍处于起步阶段,需要进一步发展。本研究有三个目的:1)探索合金化和沉淀对金属纳米结构力学性能的影响;2)研究碳纳米管-金属基纳米复合材料的力学变形行为;3)开发制备超强纳米结构的指南。拟议的项目将在我们的研究设施中进行,使用安装在场发射扫描电子显微镜内的最先进的原位纳米压痕。这被认为是加拿大第一台也是唯一一台原位纳米级机械测试仪器,也是世界上为数不多的几台之一。我们预计,该项目将导致对溶质/沉淀效应和碳纳米管对纳米结构强度的影响的深入了解,从而有可能开发出坚固且能够实现功能行为的结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tsui, Ting其他文献
Tsui, Ting的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tsui, Ting', 18)}}的其他基金
Fabricating bio-nanocomposites using integrated circuit-based advanced manufacturing techniques
使用基于集成电路的先进制造技术制造生物纳米复合材料
- 批准号:
RGPIN-2019-04935 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Fabricating bio-nanocomposites using integrated circuit-based advanced manufacturing techniques
使用基于集成电路的先进制造技术制造生物纳米复合材料
- 批准号:
RGPIN-2019-04935 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Fabricating bio-nanocomposites using integrated circuit-based advanced manufacturing techniques
使用基于集成电路的先进制造技术制造生物纳米复合材料
- 批准号:
RGPIN-2019-04935 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Fabricating bio-nanocomposites using integrated circuit-based advanced manufacturing techniques
使用基于集成电路的先进制造技术制造生物纳米复合材料
- 批准号:
RGPIN-2019-04935 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
FABRICATIONS AND MECHANICAL PROPERTIES OF SUPER STRONG FUNCTIONAL NANOSTRUCTURES
超强功能纳米结构的制备和力学性能
- 批准号:
355552-2012 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
FABRICATIONS AND MECHANICAL PROPERTIES OF SUPER STRONG FUNCTIONAL NANOSTRUCTURES
超强功能纳米结构的制备和力学性能
- 批准号:
355552-2012 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
FABRICATIONS AND MECHANICAL PROPERTIES OF SUPER STRONG FUNCTIONAL NANOSTRUCTURES
超强功能纳米结构的制备和力学性能
- 批准号:
355552-2012 - 财政年份:2015
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
FABRICATIONS AND MECHANICAL PROPERTIES OF SUPER STRONG FUNCTIONAL NANOSTRUCTURES
超强功能纳米结构的制备和力学性能
- 批准号:
355552-2012 - 财政年份:2014
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
FABRICATIONS AND MECHANICAL PROPERTIES OF SUPER STRONG FUNCTIONAL NANOSTRUCTURES
超强功能纳米结构的制备和力学性能
- 批准号:
355552-2012 - 财政年份:2013
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Electrical and mechanically robust, porous, ultra-low dielectric constant materials
电气和机械坚固、多孔、超低介电常数材料
- 批准号:
355552-2008 - 财政年份:2011
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
- 批准号:
24K17868 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Innovative Zn alloys with essential mechanical and biofunctional properties
具有基本机械和生物功能特性的创新锌合金
- 批准号:
DP240101131 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Projects
Primary ferrite nucleation by Oxide+TiN to improve corrosion resistance and mechanical properties of duplex stainless steel weld
氧化物 TiN 初生铁素体形核提高双相不锈钢焊缝的耐腐蚀性和机械性能
- 批准号:
24K17531 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study for mechanical properties of carbon fiber-reinforced composite materials with phase-separated structures
相分离结构碳纤维增强复合材料力学性能研究
- 批准号:
23H01291 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Detection of Emergent Mechanical Properties of Biologically Complex Cellular States
生物复杂细胞状态的紧急机械特性的检测
- 批准号:
10838854 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
An integrated understanding of tectonics based on mechanical properties exploration of the island-arc crust
基于岛弧地壳力学性质探测的构造综合认识
- 批准号:
23H01270 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DMREF/Collaborative Research: Iterative Design and Fabrication of Hyperuniform-Inspired Materials for Targeted Mechanical and Transport Properties
DMREF/合作研究:针对目标机械和传输性能的超均匀材料的迭代设计和制造
- 批准号:
2323342 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Iterative Design and Fabrication of Hyperuniform-Inspired Materials for Targeted Mechanical and Transport Properties
DMREF/合作研究:针对目标机械和传输性能的超均匀材料的迭代设计和制造
- 批准号:
2323343 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Active Learning-Based Material Discovery for 3D Printed Solids with Locally-Tunable Electrical and Mechanical Properties
DMREF/协作研究:基于主动学习的材料发现,用于具有局部可调电气和机械性能的 3D 打印固体
- 批准号:
2323696 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Effect of mechanical properties of roller pump tubing materials for extracorporeal circulation on blood damage
体外循环滚子泵管材力学性能对血液损伤的影响
- 批准号:
23K17249 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists