Quantum gravity and non-linear sigma models

量子引力和非线性西格玛模型

基本信息

  • 批准号:
    9016-2008
  • 负责人:
  • 金额:
    $ 1.72万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2012
  • 资助国家:
    加拿大
  • 起止时间:
    2012-01-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

My research focuses on the problem of constructing a quantum theory which describes the interaction of fields and particles with the gravitational field. This remains THE unsolved problem in fundamental theoretical physics. My particular research program in this area involves constructing toy quantum gravity models; that is, theories which address the basic issue but are less encumbered by the profound technical difficulties associated with this problem. Typically, these toy models involve physics in which`space' has less than three dimensions. One such class of theories, quantum dilaton gravity, has only one spatial dimension. These models can be pushed quite far, and in them one can address some of the difficult issues in quantum gravity- for instance, the problem of time, the occurrence of singularities and the decay of black holes. My current work in this area proceeds from a novel procedure for constructing quantum theories, and predicts a discrete, lattice-like structure for space. Another problem that I work on concerns non-linear sigma models. String theories are a type of non-linear sigma model in which the background spacetime geometry is flat, as in the special theory of relativity. If the background is not flat, then the self-consistency of the theory requires that certain equations, called the RG flow, have fixed points and these fixed points are the permissible backgrounds. I am looking at RG flows and addressing questions concerning the relationship between these equations and the dynamical changes (that is, changes in time) of geometries and other fields. Finally, I am looking at theories which generalize conformal field theories. The latter are field theories over a two dimensional spacetime, characterized by an infinite dimensional symmetry algebra, called the Kac-Moody algebra. I am looking at generalizations which are field theories in a four dimensional spacetime, and are characterized by a certain generalizations of the Kac-Moody algebras, called 2-Toroidal Lie algebras.
我的研究重点是构建一个描述场和粒子与引力场相互作用的量子理论。这仍然是基础理论物理学中尚未解决的问题。我在这一领域的具体研究计划涉及构建玩具量子引力模型;也就是说,这些理论解决了基本问题,但不太受与此问题相关的深刻技术困难的束缚。通常,这些玩具模型所涉及的物理空间不到三个维度。量子膨胀引力就是这样一类理论,它只有一个空间维度。这些模型可以推广到很远的地方,其中可以解决量子引力中的一些难题--例如,时间问题、奇点的出现和黑洞的衰变。我目前在这一领域的工作源于一种构建量子理论的新程序,并预测了一种离散的、类似格子的空间结构。我研究的另一个问题与非线性西格玛模型有关。弦理论是一种非线性西格玛模型,它的背景时空几何是扁平的,就像狭义相对论中的那样。如果背景不是平坦的,那么理论的自洽要求某些方程,称为RG流,有不动点,而这些不动点是允许的背景。我正在研究RG流,并回答有关这些方程与几何和其他场的动态变化(即,时间变化)之间的关系的问题。最后,我来看看推广共形场理论的理论。后者是二维时空上的场论,其特征是无限维对称代数,称为Kac-Moody代数。我正在研究的是四维时空中的场论的推广,其特征是Kac-Moody代数的某些推广,称为2环李代数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gegenberg, Jack其他文献

Gegenberg, Jack的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gegenberg, Jack', 18)}}的其他基金

Gauge Theories and Quantum Gravity
规范理论和量子引力
  • 批准号:
    9016-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Discovery Grants Program - Individual
Gauge Theories and Quantum Gravity
规范理论和量子引力
  • 批准号:
    9016-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Discovery Grants Program - Individual
Gauge Theories and Quantum Gravity
规范理论和量子引力
  • 批准号:
    9016-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Discovery Grants Program - Individual
Gauge Theories and Quantum Gravity
规范理论和量子引力
  • 批准号:
    9016-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Discovery Grants Program - Individual
Gauge Theories and Quantum Gravity
规范理论和量子引力
  • 批准号:
    9016-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum gravity and non-linear sigma models
量子引力和非线性西格玛模型
  • 批准号:
    9016-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum gravity and non-linear sigma models
量子引力和非线性西格玛模型
  • 批准号:
    9016-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum gravity and non-linear sigma models
量子引力和非线性西格玛模型
  • 批准号:
    9016-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum gravity and non-linear sigma models
量子引力和非线性西格玛模型
  • 批准号:
    9016-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum gravity, geometry and topology
量子引力、几何和拓扑
  • 批准号:
    9016-2003
  • 财政年份:
    2007
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Research Grant
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
  • 批准号:
    2882187
  • 财政年份:
    2023
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Studentship
Non-perturbative effects of quantum gravity from JT gravity matrix model
JT 引力矩阵模型中量子引力的非微扰效应
  • 批准号:
    22K03594
  • 财政年份:
    2022
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Uses of non-commutative geometry in quantum gravity
非交换几何在量子引力中的应用
  • 批准号:
    418325-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Discovery Grants Program - Individual
Non-Perturbative Aspects of Quantum Field Theory and Gravity
量子场论和引力的非微扰方面
  • 批准号:
    1620542
  • 财政年份:
    2016
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Continuing Grant
Can Quantum Technology gravity be combined with other (non QT) geophysical instrumentation to set constraints for gravity inversion?
量子技术重力能否与其他(非 QT)地球物理仪器相结合来设置重力反演的约束?
  • 批准号:
    1820845
  • 财政年份:
    2016
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Studentship
Uses of non-commutative geometry in quantum gravity
非交换几何在量子引力中的应用
  • 批准号:
    418325-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Discovery Grants Program - Individual
Study on non-perturbative effects in gauge theory and quantum gravity
规范理论和量子引力中的非微扰效应研究
  • 批准号:
    15K17643
  • 财政年份:
    2015
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Uses of non-commutative geometry in quantum gravity
非交换几何在量子引力中的应用
  • 批准号:
    418325-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Discovery Grants Program - Individual
Uses of non-commutative geometry in quantum gravity
非交换几何在量子引力中的应用
  • 批准号:
    418325-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.72万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了