Geometric spectral analysis

几何光谱分析

基本信息

  • 批准号:
    3438-2013
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2013
  • 资助国家:
    加拿大
  • 起止时间:
    2013-01-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

In atomic and molecular physics, the fundamental equations have already been established. What it is often difficult is to say unambiguously what the implications of the theory are for specific physical systems. These problems of complexity are essentially mathematical or computational. This research is principally to do with developing methods that can be used to reduce complexity and allow the problems to be solved to a satisfactory degree of accuracy. Systems of identical particles in quantum mechanics obey a very powerful constraint: under the interchange of particles, the allowed states are either symmetric (bosons) or anti-symmetric (fermions). A formulation can be devised which is a dynamic analog of the crystallographic principle, that the crystal reproduces the shape of the molecular unit cell; dynamically, a many-particle quantum system behaves approximately like a special scaled version of a two-particle system. Further simplifications are possible when potential studied is an envelope curve of a family of previously-studied potentials. Thus symmetry and geometry are used to effect computational simplifications, which ideally retain definite relationships between the original problem and the soluble model. The validity of these methods is often independent of the number of particles or the dimension of the space in which they move. Fundamental questions naturally arise to do with the relation of one problem to another, so that new 'comparison theorems' are called for. The difficulties for few-particle systems such as atoms and molecules at medium energies, where relativity is important, lead to the construction of spectrally equivalent non-relativistic models. This may be effected by an iterative inversion method that generates the model from the data. Thus an important component of this work is the development of computational techniques, both with exact computer algebra, and by direct numerical analysis. For example, in the Asymptotic Iteration Method (AIM), a computer program iterates a sequence of functions until an exact or approximate solution is reached. Because of the universality of mathematics, this method is useful for a much wider class of scientific problems than that for which it was originally created.
在原子和分子物理学中,基本方程已经建立起来。通常很难毫不含糊地说出这一理论对特定物理系统的含义。这些复杂的问题本质上是数学或计算问题。这项研究主要是为了开发可以用来降低复杂性并使问题解决到令人满意的精度程度的方法。量子力学中的完全相同的粒子系统服从一个非常强大的约束:在粒子互换的情况下,允许的态要么是对称的(玻色子),要么是反对称的(费米子)。可以设计出一种公式,它是结晶学原理的动态模拟,即晶体再现分子单胞的形状;动态地,多粒子量子系统的行为近似于两粒子系统的特殊比例版本。当所研究的势是一族先前研究的势的包络曲线时,进一步的简化是可能的。因此,对称性和几何被用来实现计算简化,这理想地保留了原始问题和可解模型之间的明确关系。这些方法的有效性通常与粒子的数量或它们在其中运动的空间的维度无关。与一个问题与另一个问题的关系有关的基本问题自然而然地出现了,因此需要新的“比较定理”。对于中能的原子和分子等少数粒子系统来说,相对论很重要,这就导致了光谱等价的非相对论模型的构建。这可以通过从数据生成模型的迭代逆方法来实现。因此,这项工作的一个重要组成部分是计算技术的发展,既有精确的计算机代数,也有直接的数值分析。例如,在渐近迭代法(AIM)中,计算机程序迭代一系列函数,直到得到精确或近似的解。由于数学的普遍性,这种方法对更广泛的科学问题是有用的,而不是它最初被创造出来的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hall, Richard其他文献

Drug shortages in Canadian anesthesia: a national survey
'Whiteness is an immoral choice': the idea of the University at the intersection of crises.
  • DOI:
    10.1007/s10734-022-00855-3
  • 发表时间:
    2022-04-20
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Hall, Richard;Gill, Rajvir;Gamsu, Sol
  • 通讯作者:
    Gamsu, Sol
Burst strength analysis of casing with geometrical imperfections
Cerebral Oximetry Monitoring to Maintain Normal Cerebral Oxygen Saturation during High-risk Cardiac Surgery A Randomized Controlled Feasibility Trial
  • DOI:
    10.1097/aln.0000000000001029
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Deschamps, Alain;Hall, Richard;Denault, Andre
  • 通讯作者:
    Denault, Andre
Development of a Canadian deceased donation education program for health professionals: a needs assessment survey

Hall, Richard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hall, Richard', 18)}}的其他基金

Geometric spectral analysis
几何光谱分析
  • 批准号:
    3438-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric spectral analysis
几何光谱分析
  • 批准号:
    3438-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric spectral analysis
几何光谱分析
  • 批准号:
    3438-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric spectral analysis
几何光谱分析
  • 批准号:
    3438-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric spectral analysis
几何光谱分析
  • 批准号:
    3438-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric spectral analysis
几何光谱分析
  • 批准号:
    3438-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric spectral analysis
几何光谱分析
  • 批准号:
    3438-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric spectral analysis
几何光谱分析
  • 批准号:
    3438-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric spectral analysis
几何光谱分析
  • 批准号:
    3438-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric spectral analysis
几何光谱分析
  • 批准号:
    3438-2003
  • 财政年份:
    2007
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
  • 批准号:
    LTGY23H220001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
关于spectral集和spectral拓扑若干问题研究
  • 批准号:
    11661057
  • 批准年份:
    2016
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
  • 批准号:
    11473055
  • 批准年份:
    2014
  • 资助金额:
    95.0 万元
  • 项目类别:
    面上项目
低杂波加热的全波解TORIC数值模拟以及动理论GeFi粒子模拟
  • 批准号:
    11105178
  • 批准年份:
    2011
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Geometric Analysis and Spectral Theory
几何分析和谱理论
  • 批准号:
    RGPIN-2019-03900
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Analysis and Spectral Theory
几何分析和谱理论
  • 批准号:
    RGPIN-2019-03900
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Spectral Theory and Geometric Analysis in Several Complex Variables
RUI:多个复杂变量的谱理论和几何分析
  • 批准号:
    2055538
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Geometric Analysis and Spectral Theory
几何分析和谱理论
  • 批准号:
    RGPIN-2019-03900
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Analysis and Spectral Theory
几何分析和谱理论
  • 批准号:
    RGPIN-2019-03900
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric spectral analysis
几何光谱分析
  • 批准号:
    3438-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
A spectral geometric framework for 3D shape analysis and applications
用于 3D 形状分析和应用的光谱几何框架
  • 批准号:
    311656-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Thematic Program on Geometric Analysis and Spectral Theory
几何分析与谱理论专题课程
  • 批准号:
    1647230
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Geometric spectral analysis
几何光谱分析
  • 批准号:
    3438-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Spectral Theory and Geometric Analysis in Several Complex Variables
RUI:多个复杂变量的谱理论和几何分析
  • 批准号:
    1500952
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了