RUI: Spectral Theory and Geometric Analysis in Several Complex Variables
RUI:多个复杂变量的谱理论和几何分析
基本信息
- 批准号:1500952
- 负责人:
- 金额:$ 17.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many physical and social phenomena can be modeled mathematically using partial differential operators. The Laplace operator is a differential operator that has long played an important role in mechanics, physics, and mathematics. The complex Laplace operator is a natural outgrowth of the classical Laplace operator in complex analysis of several variables, a branch of mathematics where algebra, analysis, and geometry intertwine. This research project investigates analytic and geometric properties of the complex Laplace operator, in particular, its spectrum. Spectral analysis is a major tool in scientific research, and spectral properties of the complex Laplace operator are known to be closely related to certain quantum phenomena in physics. The goal of this project is to understand how algebraic, analytic, and geometric structures of the underlying complex space interact with each other. The project combines ideas and methods from several branches of mathematics, and the techniques under development could potentially have applications in other areas of mathematics and physical sciences. This project involves undergraduate students in research activities and broadens participation of underrepresented groups in mathematics. The complex Neumann Laplace operator is a prototype of an elliptic operator with non-coercive boundary conditions. Since the work of Kohn and Hörmander in the 1960's, there have been extensive studies on regularity theory of the complex Neumann Laplace operator that led to important discoveries in both partial differential equations and several complex variables. The main thrust of this proposal is to study spectral theory of the complex Neumann Laplace operator, with emphasis on the interplay between the spectral behavior of the operator and the underlying geometric structures. Among the problems studied in this project are stability of the spectrum as the underlying structures deform and characterization of complex manifolds whose complex Laplace operator has discrete spectrum. Also investigated are regularity theory of the Cauchy-Riemann operator on complex manifolds, reproducing kernels, invariant metrics, and their applications to problems in complex algebraic geometry. This project supports research activities of undergraduate and graduate students, facilitates the development of new courses that attract students into mathematics, and fosters interdisciplinary research.
许多物理和社会现象可以用偏微分算子来数学建模。 拉普拉斯算子是一种微分算子,长期以来在力学、物理学和数学中发挥着重要作用。复拉普拉斯算子是多元复分析中经典拉普拉斯算子的自然产物,多元复分析是代数、分析和几何相互交叉的数学分支。本研究计画探讨复拉普拉斯算符的解析与几何性质,特别是其频谱。 谱分析是科学研究中的一个主要工具,而复拉普拉斯算符的谱特性与物理学中的某些量子现象密切相关。 该项目的目标是了解复杂空间的代数,分析和几何结构如何相互作用。该项目结合了数学几个分支的思想和方法,正在开发的技术可能在数学和物理科学的其他领域有潜在的应用。该项目涉及研究活动的本科生,并扩大了数学代表性不足的群体的参与。复Neumann拉普拉斯算子是具有非强制边界条件的椭圆算子的原型。 自20世纪60年代Kohn和Hörmander的工作以来,人们对复Neumann拉普拉斯算子的正则性理论进行了广泛的研究,导致了偏微分方程和几个复变量的重要发现。 这个建议的主要目的是研究复诺依曼拉普拉斯算子的谱理论,重点是算子的谱行为和基本几何结构之间的相互作用。在这个项目中研究的问题是稳定性的频谱作为底层结构变形和表征复杂的流形,其复杂的拉普拉斯运营商具有离散频谱。 还研究了复流形上的Cauchy-Riemann算子的正则性理论,再生核,不变度量及其在复代数几何问题中的应用。 该项目支持本科生和研究生的研究活动,促进吸引学生进入数学的新课程的开发,并促进跨学科研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siqi Fu其他文献
A Uniaxial Cell Stretcher In Vitro Model Simulating Tissue Expansion of Plastic Surgery
模拟整形外科组织扩张的单轴细胞担架体外模型
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Siqi Fu;Jincai Fan;Liqiang Liu;Hu Jiao;Cheng Gan;Jia Tian;Wenlin Chen;Zengjie Yang;Z. Yin - 通讯作者:
Z. Yin
Aesthetic Correction of Severe Cicatricial Upper-Eyelid Ectropion with a Retrograde Postauricular Island Flap
逆行耳后岛状皮瓣美学矫正严重疤痕性上眼睑外翻
- DOI:
10.1007/s00266-012-0009-9 - 发表时间:
2013 - 期刊:
- 影响因子:2.4
- 作者:
Siqi Fu;Jincai Fan;Wenlin Chen;Zengjie Yang;Z. Yin - 通讯作者:
Z. Yin
Spectral Stability of the $\bar\partial-$Neumann Laplacian: Domain Perturbations.
$arpartial-$Neumann 拉普拉斯算子的光谱稳定性:域扰动。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Siqi Fu;Weixia Zhu - 通讯作者:
Weixia Zhu
Hearing the type of a domain in C^2 with the d-bar-Neumann Laplacian
使用 d-bar-Neumann Laplacian 判断 C^2 中域的类型
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Siqi Fu - 通讯作者:
Siqi Fu
Catalytic ozonation for imazapic degradation over kelp-derived biochar: Promotional role of N- and S-based active sites
海带生物炭上咪草烟降解的催化臭氧化:基于 N 和 S 的活性位点的促进作用
- DOI:
10.1016/j.scitotenv.2022.160473 - 发表时间:
- 期刊:
- 影响因子:9.8
- 作者:
Da Wang;Shiwen Dong;Siqi Fu;Yi Shen;Tao Zeng;Weiting Yu;Xiaohui Lu;Lizhang Wang;Shuang Song;Jun Ma - 通讯作者:
Jun Ma
Siqi Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siqi Fu', 18)}}的其他基金
RUI: Spectral Theory and Geometric Analysis in Several Complex Variables
RUI:多个复杂变量的谱理论和几何分析
- 批准号:
2055538 - 财政年份:2021
- 资助金额:
$ 17.89万 - 项目类别:
Standard Grant
Spectral theory of Complex Laplacians and Applications
复拉普拉斯谱理论及其应用
- 批准号:
1101678 - 财政年份:2011
- 资助金额:
$ 17.89万 - 项目类别:
Standard Grant
Midwest Several Complex Variables Conference
中西部多个复杂变量会议
- 批准号:
1101665 - 财政年份:2011
- 资助金额:
$ 17.89万 - 项目类别:
Standard Grant
Geometric Analysis of Complex Laplacians
复杂拉普拉斯算子的几何分析
- 批准号:
0805852 - 财政年份:2008
- 资助金额:
$ 17.89万 - 项目类别:
Standard Grant
Differential Operators in Several Complex Variables
多个复变量中的微分算子
- 批准号:
0500909 - 财政年份:2005
- 资助金额:
$ 17.89万 - 项目类别:
Standard Grant
Partial Differential Equations and Geometric Analysis in Several Complex Variables
多复变量的偏微分方程和几何分析
- 批准号:
0406189 - 财政年份:2003
- 资助金额:
$ 17.89万 - 项目类别:
Standard Grant
Partial Differential Equations and Geometric Analysis in Several Complex Variables
多复变量的偏微分方程和几何分析
- 批准号:
0070697 - 财政年份:2000
- 资助金额:
$ 17.89万 - 项目类别:
Standard Grant
相似国自然基金
一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
- 批准号:LTGY23H220001
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
关于spectral集和spectral拓扑若干问题研究
- 批准号:11661057
- 批准年份:2016
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
- 批准号:11473055
- 批准年份:2014
- 资助金额:95.0 万元
- 项目类别:面上项目
相似海外基金
Spectral theory of relativistic quantum Hamiltonians
相对论量子哈密顿量的谱论
- 批准号:
2903825 - 财政年份:2024
- 资助金额:
$ 17.89万 - 项目类别:
Studentship
Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
- 批准号:
23K03152 - 财政年份:2023
- 资助金额:
$ 17.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies of multi-dimensional quantum walks by spectral scattering theory
光谱散射理论研究多维量子行走
- 批准号:
23K03224 - 财政年份:2023
- 资助金额:
$ 17.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing quantum probabilistic approach to spectral graph theory and multi-variate orthogonal polynomials
开发谱图理论和多元正交多项式的量子概率方法
- 批准号:
23K03126 - 财政年份:2023
- 资助金额:
$ 17.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral Theory and Applications for Models with Localized or Boundary Defects
具有局部或边界缺陷模型的谱理论和应用
- 批准号:
2307384 - 财政年份:2023
- 资助金额:
$ 17.89万 - 项目类别:
Standard Grant
Harmonic analysis techniques in spectral theory
谱理论中的谐波分析技术
- 批准号:
EP/X011488/1 - 财政年份:2023
- 资助金额:
$ 17.89万 - 项目类别:
Research Grant
Combinatorial matrix theory and spectral analysis
组合矩阵理论和谱分析
- 批准号:
RGPIN-2022-05137 - 财政年份:2022
- 资助金额:
$ 17.89万 - 项目类别:
Discovery Grants Program - Individual
Spectral theory of singular surfaces
奇异表面的谱理论
- 批准号:
RGPIN-2018-04389 - 财政年份:2022
- 资助金额:
$ 17.89万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
- 批准号:
2154335 - 财政年份:2022
- 资助金额:
$ 17.89万 - 项目类别:
Standard Grant














{{item.name}}会员




