Combinatoral problems on matching extension and graph factors

匹配扩展和图因子的组合问题

基本信息

  • 批准号:
    122059-2009
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2013
  • 资助国家:
    加拿大
  • 起止时间:
    2013-01-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

Graph Theory is an old but re-born and energized branch of mathematics. It has grown rapidly since the 1960's due to its wide range of applications in Physics, Biology and Operations Research, especially since the wide-spread usage of computers and communication networks. The introduction of Graph Theory as a working frame has changed the landscape of scientific investigations completely. Graph Theory has become one of the most active branches of mathematics. Computing science also provides a growing opportunity for the use of Graph Theory. More recently, Graph Theory also became a useful instrument for the study of gene sequences and environment sustainability, management science and logic designing. During the 2006 ICM conference, there were 6 one-hour invited talks related to Combinatorics and Graph Theory, which is clear evidence of the recognition of its importance from the mathematical society.
图论是一个古老的,但重新诞生和充满活力的数学分支。自20世纪60年代以来,由于其在物理学,生物学和运筹学中的广泛应用,特别是计算机和通信网络的广泛使用,它得到了迅速发展。图论作为一种工作框架的引入彻底改变了科学研究的面貌。图论已成为数学中最活跃的分支之一。计算科学也为图论的使用提供了越来越多的机会。 最近,图论也成为研究基因序列和环境可持续性,管理科学和逻辑设计的有用工具。在2006年ICM会议期间,有6个一小时的邀请演讲与组合数学和图论有关,这清楚地证明了数学社会对其重要性的认识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu, Qinglin其他文献

Burdens and Difficulties Experienced by Parental Caregivers of Children and Adolescents with Idiopathic Nephrotic Syndrome in Mainland China: A Qualitative Study.
  • DOI:
    10.2147/jmdh.s413677
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Hu, Xinmiao;Wu, Qian;Lu, Qunfeng;Zhang, Jiangao;Yang, Xiaowei;Chen, Wenjian;Wang, Ping;Yu, Qinglin;Dong, Jingan;Sang, Yan
  • 通讯作者:
    Sang, Yan
On the existence of general factors in regular graphs
论正则图中一般因子的存在性
Maximum fractional factors in graphs
图表中的最大分数因子
  • DOI:
    10.1016/j.aml.2007.02.004
  • 发表时间:
    2007-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Liu, Guizhen;Zhang, Lanju;Yu, Qinglin
  • 通讯作者:
    Yu, Qinglin
Effect of curing conditions on freeze-thaw resistance of geopolymer mortars containing various calcium resources
  • DOI:
    10.1016/j.conbuildmat.2021.125507
  • 发表时间:
    2021-11-08
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Jiao, Zhenzhen;Li, Xueying;Yu, Qinglin
  • 通讯作者:
    Yu, Qinglin
On superconnectivity of (4,g)-cages
(4,g)-笼的超连通性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lu, Hongliang;Wu, Yunjian;Lin, Yuqing;Yu, Qinglin;Balbuena, Camino;Marcote, Xavier
  • 通讯作者:
    Marcote, Xavier

Yu, Qinglin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu, Qinglin', 18)}}的其他基金

Matching extensions in graphs and hypergraphs: structures, algorithms and characterizations
图和超图的匹配扩展:结构、算法和表征
  • 批准号:
    RGPIN-2019-06429
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Matching extensions in graphs and hypergraphs: structures, algorithms and characterizations
图和超图的匹配扩展:结构、算法和表征
  • 批准号:
    RGPIN-2019-06429
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Matching extensions in graphs and hypergraphs: structures, algorithms and characterizations
图和超图的匹配扩展:结构、算法和表征
  • 批准号:
    RGPIN-2019-06429
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Matching extensions in graphs and hypergraphs: structures, algorithms and characterizations
图和超图的匹配扩展:结构、算法和表征
  • 批准号:
    RGPIN-2019-06429
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
  • 批准号:
    RGPIN-2014-05317
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
  • 批准号:
    RGPIN-2014-05317
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
  • 批准号:
    RGPIN-2014-05317
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
  • 批准号:
    RGPIN-2014-05317
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
  • 批准号:
    RGPIN-2014-05317
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Predictive models of energy conservation at HVC and its sensitivity analysis
HVC节能预测模型及其敏感性分析
  • 批准号:
    465039-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Engage Plus Grants Program

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

AF: Small: Algorithmic Problems in Online and Matching-Based Market Design
AF:小:在线和基于匹配的市场设计中的算法问题
  • 批准号:
    2230414
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Dynamic Matching Problems with Application to Kidney Allocation
动态匹配问题在肾脏分配中的应用
  • 批准号:
    2137286
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Extensions of stable matching problems and algorithm design
稳定匹配问题和算法设计的扩展
  • 批准号:
    20K11677
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamic Matching Problems with Application to Kidney Allocation
动态匹配问题在肾脏分配中的应用
  • 批准号:
    2010940
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Development of optimal time-space algorithms on pattern matching problems
模式匹配问题的最优时空算法的发展
  • 批准号:
    19K20208
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Matching Problems in Refugee Resettlement
难民安置中的匹配问题
  • 批准号:
    1825348
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Algorithms for matching problems involving preferences
涉及偏好的匹配问题的算法
  • 批准号:
    2125850
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Studentship
AF: SMALL : Algorithmic and Game Theoretic Problems Arising in Modern Matching Markets
AF:小:现代匹配市场中出现的算法和博弈论问题
  • 批准号:
    1813135
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
IP-MATCH: Integer Programming for Large and Complex Matching Problems
IP-MATCH:大型复杂匹配问题的整数规划
  • 批准号:
    EP/P028306/1
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
IP-MATCH: Integer Programming for Large and Complex Matching Problems
IP-MATCH:大型复杂匹配问题的整数规划
  • 批准号:
    EP/P029825/1
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了