Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
基本信息
- 批准号:RGPIN-2014-05317
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Subgraph extension and graph coloring problems Graph Theory is an old but re-born and energized branch of mathematics. It has grown rapidly since the 1960’s with its applications spreading to Physics, Biology and Operations Research, in particular to Computing Science and communication networks. Often graphs are used as a working frame for various scientific investigations. In particular, Computing Science has provided many interesting problems for Graph Theory to grow. More recently, Graph Theory has become a useful instrument for the study of gene sequences, environment sustainability, management science and logic designing. The proposed program is to expand our knowledge on graph factors, subgraph extension and its connection to other combinatorial topics. The objectives are to acquire knowledge, both for research and HQP training in three ways: 1) To understand the structures of subgraph extension graphs (i.e., (Y, H)-extendable graphs) by developing a decomposition procedure for the purpose of general recursive arguments. Such a decomposition will be vital for the design of efficient algorithms to recognize and to construct the family of such graphs. This work involves to generalize the existing techniques and methods, and to create new analysis tools for the general framework and abstract models. 2) The research will deliver a more consistent and universal framework for the potential applications of subgraph extension to other combinatorial problems and other mathematical branches. The concept, (Y, H)-extendable graphs, is a well-defined framework, which not only consolidate many well-known concepts (e.g., factor-critical graph, bicritical graphs and defect-d matching) together and also maintain the basic properties of its sub-classes. This enables us to simplify many of the previous proofs and establish closer connections to other graph theory problems. 3) In our proposal, we have stated many closely related and well-defined problems. These problems have different levels of difficulties, from conjectures and open problems, to generalization of known results and construction of specified classes of graphs; we also carefully select and blend the problems in proposal by considering our short-term and long-term objectives. The problems proposed will fulfill my vision in the study of subgraph extension and also provide opportunities for involvement of undergraduate and graduate students to engage in creation, exploration and experiencing rigorous research.
子图扩张与图着色问题图论是一个古老而又充满活力的数学分支。自20世纪60年代以来,它迅速发展,其应用扩展到物理学,生物学和运筹学,特别是计算科学和通信网络。图表经常被用作各种科学研究的工作框架。特别是,计算科学为图论的发展提供了许多有趣的问题。最近,图论已成为研究基因序列、环境可持续性、管理科学和逻辑设计的有用工具。 建议的计划是扩大我们的知识,图的因素,子图的扩展和连接到其他组合的主题。目标是以三种方式获得知识,用于研究和HQP培训:1)理解子图扩展图的结构(即,(Y,H)-可扩展图)的一般递归参数的目的,通过开发一个分解过程。这样的分解将是至关重要的设计有效的算法来识别和构造的家庭,这样的图。这一工作涉及到对现有技术和方法的概括,以及为通用框架和抽象模型创建新的分析工具。 2)该研究将为子图扩展到其他组合问题和其他数学分支的潜在应用提供一个更一致和通用的框架。概念(Y,H)-可扩展图是一个定义良好的框架,它不仅巩固了许多众所周知的概念(例如,因子临界图、双临界图和缺陷D匹配)在一起,并且还保持其子类的基本性质。这使我们能够简化许多以前的证明,并建立更密切的联系,以其他图论问题。 3)在我们的建议中,我们提出了许多密切相关和明确界定的问题。这些问题有不同程度的困难,从结构和开放的问题,推广已知的结果和特定类别的图形的建设,我们也仔细选择和混合的问题,考虑我们的短期和长期目标的建议。所提出的问题将实现我在子图扩张研究中的愿景,也为本科生和研究生提供参与创造,探索和体验严谨研究的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu, Qinglin其他文献
Burdens and Difficulties Experienced by Parental Caregivers of Children and Adolescents with Idiopathic Nephrotic Syndrome in Mainland China: A Qualitative Study.
- DOI:
10.2147/jmdh.s413677 - 发表时间:
2023 - 期刊:
- 影响因子:3.3
- 作者:
Hu, Xinmiao;Wu, Qian;Lu, Qunfeng;Zhang, Jiangao;Yang, Xiaowei;Chen, Wenjian;Wang, Ping;Yu, Qinglin;Dong, Jingan;Sang, Yan - 通讯作者:
Sang, Yan
On the existence of general factors in regular graphs
论正则图中一般因子的存在性
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0.8
- 作者:
Lu, Hongliang;Wang, David G.L.;Yu, Qinglin - 通讯作者:
Yu, Qinglin
Maximum fractional factors in graphs
图表中的最大分数因子
- DOI:
10.1016/j.aml.2007.02.004 - 发表时间:
2007-12 - 期刊:
- 影响因子:3.7
- 作者:
Liu, Guizhen;Zhang, Lanju;Yu, Qinglin - 通讯作者:
Yu, Qinglin
Effect of curing conditions on freeze-thaw resistance of geopolymer mortars containing various calcium resources
- DOI:
10.1016/j.conbuildmat.2021.125507 - 发表时间:
2021-11-08 - 期刊:
- 影响因子:7.4
- 作者:
Jiao, Zhenzhen;Li, Xueying;Yu, Qinglin - 通讯作者:
Yu, Qinglin
On superconnectivity of (4,g)-cages
(4,g)-笼的超连通性
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Lu, Hongliang;Wu, Yunjian;Lin, Yuqing;Yu, Qinglin;Balbuena, Camino;Marcote, Xavier - 通讯作者:
Marcote, Xavier
Yu, Qinglin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu, Qinglin', 18)}}的其他基金
Matching extensions in graphs and hypergraphs: structures, algorithms and characterizations
图和超图的匹配扩展:结构、算法和表征
- 批准号:
RGPIN-2019-06429 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Matching extensions in graphs and hypergraphs: structures, algorithms and characterizations
图和超图的匹配扩展:结构、算法和表征
- 批准号:
RGPIN-2019-06429 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Matching extensions in graphs and hypergraphs: structures, algorithms and characterizations
图和超图的匹配扩展:结构、算法和表征
- 批准号:
RGPIN-2019-06429 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Matching extensions in graphs and hypergraphs: structures, algorithms and characterizations
图和超图的匹配扩展:结构、算法和表征
- 批准号:
RGPIN-2019-06429 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
- 批准号:
RGPIN-2014-05317 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
- 批准号:
RGPIN-2014-05317 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
- 批准号:
RGPIN-2014-05317 - 财政年份:2016
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
- 批准号:
RGPIN-2014-05317 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Predictive models of energy conservation at HVC and its sensitivity analysis
HVC节能预测模型及其敏感性分析
- 批准号:
465039-2014 - 财政年份:2014
- 资助金额:
$ 0.8万 - 项目类别:
Engage Plus Grants Program
Combinatoral problems on matching extension and graph factors
匹配扩展和图因子的组合问题
- 批准号:
122059-2009 - 财政年份:2013
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
A Novel Human Virus in Patients with Cryptogenic Liver Disease
隐源性肝病患者中的一种新型人类病毒
- 批准号:
10636331 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Mathematical approach to 2 phase problem in unbounded domains and an extension of its approach to the theory of quasilinear parabolic equations
无界域中两相问题的数学方法及其对拟线性抛物型方程理论的扩展
- 批准号:
22H01134 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analogues of the Weierstrass representation formula and extension problem of submanifolds at their singularities
Weierstrass 表示公式的类似物和奇点处子流形的可拓问题
- 批准号:
22H01121 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Omics information maximization in single-cell sequencing with hybrid molecular and computational approaches
使用混合分子和计算方法实现单细胞测序中的组学信息最大化
- 批准号:
10251080 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Damage mechanism analysis of third generation ultra-high strength steels using combining method of synchrotron X-ray and finite element simulation, and its extension to inverse problem analysis
同步辐射X射线与有限元模拟相结合的第三代超高强钢损伤机理分析及其反问题分析的推广
- 批准号:
20H02484 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Omics information maximization in single-cell sequencing with hybrid molecular and computational approaches
使用混合分子和计算方法实现单细胞测序中的组学信息最大化
- 批准号:
10434956 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Applications of the theory of group schemes, especially on Lucas sequences and on the normal basis problem
群方案理论的应用,特别是在卢卡斯序列和正规基问题上的应用
- 批准号:
19K03408 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Engineering of pan-neutralizing anti-HIV envelope antibodies
全中和抗 HIV 包膜抗体的工程
- 批准号:
10304133 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Engineering of pan-neutralizing anti-HIV envelope antibodies
全中和抗 HIV 包膜抗体的工程
- 批准号:
9927080 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Engineering of pan-neutralizing anti-HIV envelope antibodies
全中和抗 HIV 包膜抗体的工程
- 批准号:
10064993 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别: